

MODERN EDUCATION SOCIETY'S Nowrosjee Wadia College, Pune (Autonomous)

SYLLABUS OF M. Sc. BIOTECHNOLOGY (Part-II)

As per National Education Policy 2020, To be implemented from Academic Year 2024-2025

Structure and Credit Distribution of the PG Biotechnology Degree Program

Vide G.R. No. NEP-2022 /CR No. 09/VISHI-3 / शिकाना dated April 20, 2023, the Directive, covering the Credit distribution structure for Four Year UG Honours/ Honours with Research Degree Programme with Multiple Entry and Exit options, was issued. In Continuation of Section 8 of this GR- 'Design of PG Master's Programmes', the Illustrative Table depicting the Credit Distribution for Two Year PG Programme with one Exit Option/ One Year PG Programme is as given below:

Illustrative Credit distribution structure for Two Years/ One Year PG
(M.A./M.Sc./M.Com.) and Ph. D. Programme

Year	Level		Maj	0 1 .		OJT	OJT RP	RP	Cum.	Degree
(2 Yr PG)		Sem. (2 Yr)	Mandatory	Electives	RM	/ FP		Cr.		
		Sem I	12-14 (2*4 +2*2 or 3*4+2)	4	4			20-22	PG Diploma (after 3	
I	6.0	Sem II	12-14 (2*4+2*2 or 3*4+2)	4		4		20-22	Yr Degree)	
Cum. Diplor	Cr. For na	PG	24-28	8	4	4	-	40-44		
	Exit o	ption: PG	Diploma (40-4	44 Credits)	after T	hree Y	ear U	G Degre	e	
п	65	Sem III	12-14 (2*4 +2*2 or 3*4+2)	4			4	20-22	PG Degree After 3- Vr UC	
	0.5	Sem IV	$ \begin{array}{r} 10-12 \\ (2^*4 + 2 \text{ or} \\ 3^*4) \end{array} $	4			6	20-22	Or PG Degree	
Cum. Cr. for 1 Yr PG Degree		Yr PG	22-26	8			10	40-44	after 4-	
Cum. Degre	Cr. for 2 e	Yr PG	46-54	16	4	4	10	80-88	neo	
2 Years-4 Sem. PG Degree (80-88 credits) after Three Year UG Degree or 1 Year-2 Sem										
		PG Degi	ree (40-44 cred	lits) after F	our Ye	ar UG	Degre	e		
	8.0		Course Wor (3*4	k Min. 12	Tra Te Ed	aining i aching lucation	n / /	16 + Ph. D.	Ph.D. in Subject	
			(3 4)		Pedagogy: 4			Work		

Abbreviations: Yr.: Year; Sem.: Semester; OJT: On Job Training: Internship/ Apprenticeship; FP: Field projects; RM: Research Methodology; Research Project: RP; Cumulative Credits: Cum. Cr.

(a) With effect from Academic Year 2023-24, Two years Master's Degree Program was be revamped as per the Illustrative Credit Distribution given in the above table.

(b) Credits offered per Semester will be a Minimum of 20 and a Maximum of 22. While minimum credits are mandatory as per National Credit Framework, the Universities can evolve the mechanism for providing Semester/ Level wise credit attainment flexibility within the broad framework.

(c) Under the One-year PG Diploma program, and two-year master's Degree program, the students must complete on-the-job training/internship of 04 credits during summer break, after completion of the second semester of the first year in the respective Major Subject.

(d) The 4 Credits Research Methodology Component is mandatory in the First Year.

(e) Since the Master's Programme is based on DSC Specialisation, the PG curricular framework will not include Minor Subject. Electives selected in the PG program may be **Relevant to OR Supportive of** the Major Subject chosen. The Statutory authorities of the University or Autonomous College can take a decision in this regard.

(f) The students will have to undertake a research project of 4 credits in Semester III and a research project of 6 credits in Semester IV in the second year of the two-year master's degree program. This is also applicable to the students admitted to one year PG program after completion of four year UG Program.

(g) Colleges already having permission and recognition for the PG degree programme along with UG degree programme in the same Major shall be automatically allowed to continue PG degree programme in the same Major without undergoing any additional procedures. Similarly, the colleges with approved PG programme and Ph.D. Research Centre in the same Major shall be automatically allowed to continue PG and Ph. D. Degree programme without undergoing any additional procedures.

(h) The exit option at the end of one year of the Master's degree program will commence from AY 2024-25. Students who have joined a two-year Master's degree program may opt for exit at the end of the first year and earn a PG Diploma.

(i) The PG Diploma may be awarded to a student provided they have earned the requisite credits in one year including on-the-job training of 04 credits during summer break, after completion of the second semester of the first year in the respective Major Subject.

(j) The one-year Master's Degree Program will begin with effect from Academic Year 2027-28.

(**k**) Re-entry to complete the PG degree, after taking the exit option, will be permissible up to 05 years from the date of admission to the PG program.

(I) With regards to the Eligibility criteria and Procedure for admission to the Ph.D. Programme, Duration of the Ph.D. Programme, Eligibility and Allocation of Research Supervisor, Course Work (Credit requirements, number, duration, syllabus, minimum standards for completion), Research Advisory Committee and its Functions, Academic, research, administrative, and infrastructure requirements to be fulfilled by Colleges for getting recognition for offering Ph.D. Programme, Award of Ph. D. Degree etc, the Universities and Autonomous Colleges must comply UGC (Minimum Standards and Procedure for Award of Ph.D. Degree) Regulations, 2022, dated Nov. 7, 2022.

(m) The University and Autonomous College must adopt this GR within 10 days after its issue

Preamble of the course:

Biotechnology has grown, extensively in last two of decades. This advanced 'interdisciplinary' life science branch encompasses areas viz. molecular biology, genetics, biochemistry, microbiology, immunology, virology, plant and animal tissue culture, chemistry, and engineering. It is a fast emerging "cutting edge" science with distinctive advantages as it finds applications in practically all aspects of life. The subject offers exciting opportunities in various fields from basic research to industry-oriented career. Global and local focus has slowlyshifted to using knowledge of life Science for innovative technology development that is being used for betterment of human life. Many fundamental research fields from cell biology to molecular biology, from genetic engineering to stem cell research, from bioinformatics to genomics-proteomics, from environmental biology and to biodiversity, from microbiology to bioprocess engineering, from bioremediation to drug discovery etc. comes under the umbrella of Biotechnology.

The proposed choice-based credit curriculum and grading system will cater to the existing interdisciplinary nature of biotechnology can also offer many courses to the other branches of life science. The generative power of biological data is effectively harnessed by biotechnology like no other field. Economic and social renaissance is staged on biotechnology especially, since it's biomedical and cutting-edge technological applications are tremendously powerful in shaping this century and exciting bio future. Keeping in view the expanse and applications of Biotechnology in every field, there is going to be a perpetual demand for resource personnel with Biotechnology specialization. The post graduate program is aimed to cater to this ever-increasing demand and to groom the students to excel in their future career. Education and research sectors require such interdisciplinary trained workforce to develop future generations of science leaders.

Introduction:

Masters in Biotechnology course syllabus is revised as per NEP guidelines 2020 to offer the needs of changing scenario in biological science. The changing scenario of higher education in India and abroad is taken into consideration while formulation this syllabus and more oriented towards current need of modern research and industrial sectors. The present syllabusis as per National Education Policy 2020, which encompasses the fundamental academics at one end and latest technologies in life science at the other. Theory courses will help students develop their knowledge sets on various topics of biotechnology, to which, they are introduced at the undergraduate level. Extensive practical courses are designed to supplement the theory courses with hands on experimentation in wet-lab and on fields. Empowerment of students to face research and industrial outlets is at the center of this syllabus. Students having to select their own courses will develop the depth in specialization and make them ready to face the upcoming scientific advances in the world without any further training. M.Sc. syllabus hasbeen prepared keeping in vision the undergraduate curriculum. At the undergraduate level, students were introduced to many fundamental topics in life sciences such as molecular biology, developmental biology, fermentation technology, biodiversity, bioinformatics, andtissue culture etc. At the post graduate level, they will be also be acquainted with

the thrust/new areas of biotechnology like bioinformatics, clinical research, data base management, IPR, Food Technology etc. to give the students the advantage of not only learning these subjects but also give them the edge over others in their employability. A research project/ industrial training Modules are incorporated to provide a buffer zone for budding biotechnologists eager to enterthe life science sector.

Objectives:

- > To help the students to build interdisciplinary approach
- > To empower students to excel in various research fields of Life Sciences
- > To inculcate sense of scientific responsibilities for social and environment awareness.
- > To acquaint the students with thrust areas of biotechnology
- To adapt the internationally acknowledged Choice Based Credit System (CBCS) that offers opportunities to learn core subjects and to explore additional avenues of learning beyond the core subjects for complete development of an individual.

Eligibility for the course M.Sc. Biotechnology.

Any candidate completed B.Sc. in Biotechnology from any recognized university.

Examination pattern

70 Marks for end semester examination and 30 marks for continuous evaluation pattern

35 Marks for External Practical examination and 15 Marks for Internal practical examination

Passing marks

Passing marks will be 40 % in each paper of continuous evaluation and end semester examseparately.

Procedure for continuous evaluation

Written test	20 marks
Assignment	5 Marks
Seminar/ attendance	5 Marks
	30 Marks

Nature of question paper for End semester examination

Que.	Туре	Max marks
No.		
1	2 marks x 7 questions (Any 6)	12
2	4 marks x 4 questions (Any 3)	12
3	5 marks x 4 questions (Any 3)	15
4	5 marks x 4 questions (Any 3) Short notes type	15
5	8 marks x 3 questions (Any 2)	16
	Total	70 marks

Revaluation

There shall be a revaluation of answer scripts of end semester examination (out of 70 marks) of theory papers only, but not of internal or continuous evaluation papers as per Ordnance no. 134 A and B

Grading system

Percentage	Grade	Grade Point
80-100	O: Outstanding	10
70-79	A+: Excellent	9
60-69	A: Very Good	8
55-59	B+: Good	7
50-54	B: Above Average	6
45-49	C: Average	5
40-44	P: Pass	4
0-39	F: Fail	0
-	Ab: Absent	0

Course	Course	Course / Paper Title	Hours	Credit	CIA	ESE	Total
Туре			/ Week				
Major Mandatory	Major Paper 1 (Theory)	PBTMJ111 Advanced Biological Chemistry	2	4	30	70	100
(4+2)	Major Paper 2 (Theory)	PBTMJ112 Genetics and Molecular Biology	2	4	30	70	100
	Major Paper 3 (Practical)	PBTMJ113 Practicals in Advanced Biological Chemistry	4	2	15	35	50
	Major Paper 4 (Practical)	PBTMJ114 Practicals in Genetics and Molecular Biology	4	2	15	35	50
Major Electives	Major Paper 5(A) (Theory)	PBTMJ115(A) Biostatistics OR	2	4	30	70	100
	Major Paper (B) (Theory)	PBTMJ115(B) Food Biotechnology	2	4	30	70	100
	Research Methodology	PBTRM116 Research methodology	2	4	30	70	100
	OJT / FP	NA					
	RP	NA					
Total Credits					20		

Course Structure Semester I (First Year)

CIA- Continuous Internal assessment

Course Type	Course	Course / Paper Title	Hours /	Credit	CIA	ESE	Total
-510			Week				
Major Mandatory	Major Paper 6 (Theory)	PBTMJ121 Recombinant DNA Technology	2	4	30	70	100
(4+2)	Major Paper 7 (Theory)	PBTMJ122 Biophysics	2	4	30	70	100
	Major Paper 8 (Practical)	PBTMJ123 Practicals in Recombinant DNA Technology	4	2	15	35	50
	Major Paper 9 (Practical)	PBTMJ124 Practicals in Biophysics	4	2	15	35	50
Major Electives	Major Paper 10(A) (Theory)	PBTMJ125(A) Intellectual Property Right and Bioethics	2	4	30	70	100
	Major Paper 10(B) (Theory)	OR PBTMJ125(B) Pharmaceutical Biotechnology	2	4	30	70	100
	Research Methodology	NA					
	OJT / FP	PBTOJT126 /PBTFP126 On the Job training /field project*	120	4	30	70	100
	RP	NA					
Total Credits			1		2	0	1

Course Structure Semester II (First Year)

On-the-job training/field project*Internship/project/hands-on training in any recognized research institute for 120 hours

CIA- Continuous Internal assessment

Course	Course	Course / Paper Title	Hours	Credit	CIA	ESE	Total
Туре			/ Week				
Major Mandatory	Major Paper 11 (Theory)	PBTMJ231 Plant and Animal Biotechnology	2	4	30	70	100
(4+2)	Major Paper 12 (Theory)	PBTMJ232 Immunology	2	4	30	70	100
	Major Paper13 (Practical)	PBTMJ233 Practicals in Plant and Animal Biotechnology	4	2	15	35	50
	Major Paper 14 (Practical)	PBTMJ-234 Practicals in Immunology	4	2	15	35	50
Major Electives	Major Paper 15(A) (Theory)	PBTMJ235(A) Genomics and Proteomics	2	4	30	70	100
	Major Paper 15(B) (Theory)	OR PBTMJ235 (B) Nanobiotechnology	2	4	30	70	100
	Research Methodology	NA					
	OJT / FP	NA					
	RP	PBTRP236 Research project	120	4	3	70	100
Total Credits		·			20)	

Course Structure Semester III (Second Year)

Research project*hands on training/Wet lab work in any recognized research /academic institute for 120 contact hours

CIA- Continuous Internal assessment

Course	Course	Course / Paper Title	Hours	Credit	CIA	ESE	Total
Туре			/				
			Week				
Major	Major Paper 16	PBTMJ241 Bioinformatics	2	4	30	70	100
Mandatory	(Theory)						
(4+2)	Major Paper 17	PBTMJ242 Bioprocess	2	4	30	70	100
	(Theory)	Engineering					
	Major Paper 18	PBTMJ243 Practical in	4	2	15	35	50
	(Practical)	Bioinformatics and					
		Bioprocess Engineering					
Major	Major Paper 19(A)	PBTMJ244(A) Medical and	2	4	30	70	100
Electives	(Theory)	Forensic Biotechnology					
	Major Paper 19(B)	OR	2	4	30	70	100
	(Theory)	PBTMJ244(B) Virology and					
	· • •	Toxicology					
	Research	NA					
	Methodology						
	OJT / FP	NA					
	RP	PBTRP245 Research project	180	6	45	105	150
Total Credits	1			20		1	

Course Structure Semester IV (Second Year)

Research project*hands on training/Wet lab work in any recognized research /Academic institute for 180 contact hours

CIA- Continuous Internal assessment

UROBJEE WADIA COLLA	MODERN EDUCATION SOCIETV'S			
	Nowrosjee Wadia College, Pune (Autonomous) NEP			
	Master of Science in Biotechnology			
	SEMESTER –III Major Paper 11 (Theory)			
Year – II	Paper No- PBTMJ231	Credits 4		
Semester		Hours 60		
- III	Name of Paper- Plant and Animal Biotechnology			
Course Out On complet	comes (COs) ion of the course, the students will be able to:			
 Learn tissue culture techniques Know different methods of gene transfer and different molecular markers. Knowledge of transgenic plants and their pros and cons The students will gain an insight into the concepts and techniques of animal biotechnology and itswide industrial and medicinal applications. Do further research works 				
Sr. No.	COURSE CONTENT / SYLLABUS	Lectures		
Unit -I	 Introduction to Plant and Animal Tissue Culture Totipotency, Pluripotency Differentiation, and Redifferentiation Basic concept Callus Culture, Organogenesis, Embryogenesis Suspension Culture Micropropagation Primary and secondary cell culture, development cell lines orestablished cultures. Biological characterization of cell cultures, contact inhibition, celltransformation, cancer cells, indefinite cell lines. 	9		
Unit -II	 Advanced techniques in Plant & Animal tissue culture Somatic Embryogenesis, artificial seeds Endosperm Culture Soma clonal Variations Secondary Metabolite production using elicitors Protoplast: Isolation, fusion, somatic hybridization, hybridization and their applications cloning vectors, viral vectors methods of genetic transformation Hybridoma technology- Hybridomas, HAT selection, Selection of Hybrid clones, 	9		

Unit -III	Genetic transformation Methods:	
38	• Ti plasmid and Ri Plasmid vectors. Mechanism of T-DNA transfer to plants, <i>Agrobacterium tumefacient</i> infection, Plant viral vectors.	8
	Physical Methods: electroporation, microinjection, and Gene gun method	
Unit -IV	Transgenic Plants and Animals	
	• Introduction,	
	• Transgenic plants for biotic and abiotic stress,	
	• GM plants for crop improvement	
	• Increase in productivity by manipulation of	10
	photosynthesis and nitrogen fixation	
	• Transgenic animals and its applications – Mice and other animals	
	Biosafety regulations	
	 Guideline for research I transgenic animal 	
	Dublic awareness of the processes of	
	 I ublic awareness of the processes of producing transgenic organism 	
Unit -V	Cone Therapy and Cron Improvement	
Cint - V	Detential of marker assisted selection for Crop improvement	
	 Practical applications of MAS 	
	 MAS for major games or improvement of 	
	• MAS for major genes or improvement or qualitative and quantitative traits	10
	 Marker-assisted backcrossing: MABC procedure and 	
	theoretical and practical considerations	
	dicoronour une practical considerations	
	• Methods of gene therapy:- Somatic and germ cell	
	• Ethical issues in animal biotechnology	
Unit -VI	Applications of Plant Biotechnology	
	• molecular farming (improvement in protein, lipids,	
	carbohydrates), vaccines, antibodies, therapeutic	7
	proteins,	/
	Biopolymer production through transgenic plants	
	Single-cell protein production	
	• Use of Nano fertilizers	
Unit -VII	Application of Animal Biotechnology	
	Artificial animal breeding,	
	Cloning and transgenic animals	
	• Medicines, vaccines, diagnosis of diseases and disorders	7
	• Forensic application	
	• Identification of Wild animal species using DNA-based	
	methods	

References: -

- 1. Chawla HC (2004) Introduction to plant biotechnology (Science Publ)
- 2. Davies K (Ed) (2004) Plant pigments and their manipulation Annual plantreviews, vol 14 (Blackwell Publ)
- 3. Altman A, Hasegawa PM (Ed) (2012) Plant Biotechnology and agriculture.Prospects for the 21st Century (Academic Press).
- 4. Bhojwani SS. and Razdan MK (1996). Plant Tissue Culture: Theory and Practice (Elsevier).
- 5. Slater A, Scott NW, Fowler MR (2008) Plant Biotechnology: The Genetic Manipulation of plants (Oxford Press)
- 6. Vasil IK, Thorpe TA (1994) Plant cell and tissue culture (Springer)
- 7. H K Das Textbook of Biotechnology 4th edition
- 8. Plant Cell and Tissue Culture. A Laboratory manual 1994. Reinert J and Yeoman MMSpringer
- 9. Biotechnology in Crop Improvement, HS Chawla. International BookDistributingCompany 1998
- 10. Practical Application of Plant Molecular Biology. RJ Henry. Chapman and Hall 1997
- 11. R. Ian Freshney. Culture of Animal Cells, 5rd Edition, 2010. A John Wiley and Sons, Inc., Publications, USA
- 12. R.W.Masters. Animal Cell Culture- Practical Approach, 3rdEdithion, 2000, Oxford University Press. USA
- 13. Robert Lanza et al. Essentials of Stem Cell Biology", Academic Press, 2nd edition, 2006.USA
- 14. Molecular Biotechnology: 4th edition. (2010), Glick B.R., Pasternak J.J., Patten C. L., ASM press, USA
- 15. <u>https://youtu.be/zB9Vyh9eiaQ?si=ObXGDbuSvG05K70B</u>
- 16. Introduction to Plant Biotechnology (bcrti.co.in)
- 17. https://www.ebooks.com/en-al/book/1564552/animal-biotechnology/ashish-s-verma/

THE MADE ADDA COLLEGE	MODERN EDUCATION SOCIETY'S Nowrosjee Wadia College, Pune (Autonomous) NEP	SEE WADIA OPEN
Contraction of the		REAL PROTECTION
	Master of Science in Biotechnology	
	SEMESTER –III Major Paper 12 (Theory)	
Year – II		Credits 4
	Paper No- PBTMJ232	
Semester		Hours 60
- 111	Name of Paper- Immunology	
Course Out	comes (COs)	
On complet	ion of the course, the students will be able to:	
• Gain	knowledge about the working mechanisms of the immune system.	ty and
immu	ne biology of organ transplant.	ity, and
 Acknowledge 	owledge the role of Antibodies/Antigen in disease diagnosis	
		T
Sr. No.	COURSE CONTENT / SYLLABUS	Lectures
Unit I	Overview of Immune System	
	 Instorteal respective Important Concepts (Infection, Invasion, Pathogen, 	7
	Immunity, Immune Response, Antigen, Antibody)	
Unit II	Organization of the immune system	
	• Cells of the immune system- hematopoiesis, cell of myeloid	
	lineage, lymphoid lineage.	7
	 Primary Lymphoid Organs Secondary Lymphoid Organs 	
	• Secondary Lymphold Organs	
Unit III	Types of Immunity	
	• Innate Immunity (Barriers- Anatomical, Physiological,	
	Phagocytic, and Inflammatory)	8
	Adaptive Immunity (Active and Passive)	
	Immune Response	
	Primary and Secondary lines of defense	
Unit IV	Components of Immune System	
	• Immunogen	
	Antigens (Types and Properties)	8
	 Hapten Immunoglobulins (Structure and Types) 	
	- minunogiobumis (or detare and Types)	
Unit IV	 Adaptive Immunity (Active and Passive) Immune Response Primary and Secondary lines of defense Components of Immune System Immunogen Antigens (Types and Properties) Hapten Immunoglobulins (Structure and Types) 	8

Unit V	 T-cell Activation, Differentiation, and Memory B-cell Activation, Differentiation, and Memory generation Major Histocompatibility Complex (Structure and Function) Complement System 	8
Unit VI	 Antigen-Antibody Interaction General characteristics of Antigen-Antibody Interactions Experimental Systems and Methods Antibody Generation – monoclonal and polyclonal Immunoprecipitation – based techniques Agglutination reactions Radioimmunoassay (RIA) Enzyme Linked Immuno Sorbent Assay (ELISA) ELISPOT Assay Western blotting Immunohistochemistry Immunocytochemistry 	7
Unit VII	 Clinical Immunology Hypersensitivity Reactions (Types and clinical manifestations) Autoimmunity (Mechanism and types of Autoimmune diseases) Immunodeficiency disorders 	7
Unit VIII	 Scope of Immunology Immunotherapy Transplantation Immunology Vaccines- a) <i>In situ</i> vaccine design b) Types of vaccines Interferons Anticancer drugs 	8

Reference books:

- 1. Kuby Immunology (2018) 8th ed., Punt J, Stranford S, Jones P and Owen JA, W.H Freeman and Company, ISBN: 978-1319114701.
- 2. Janeway's Immunobiology (2017) 9th ed., Murphy KM and Beaver C, WW Norton and Company, ISBN: 978-0815345510.
- 3. Roitt's Essential Immunology (2017) 13th ed., Delvis PJ, Martin SJ, Burton DR and Roitt, IM, Wiley-Blackwell, ISBN: 978-1118415771.
- 4. Lehninger: Principles of Biochemistry (2017) 7th ed., Nelson, DL and Cox, MM, WH Freemanand Company (New York), ISBN: 978-1319108243. Lippincott's illustrated Reviews Immunology (2012) 2nd ed., Doan T, Melvold R, Viselli S andWaltenbaugh, C, Wolters Kluwer India Pvt, Ltd, ISBN: 978-8184737639.

https://www.youtube.com/watch?v=G4jobV6-bFA

https://www.youtube.com/watch?v=UZTf3OXJDWA

https://www.youtube.com/watch?v=CXz6FVqPqHw

https://www.youtube.com/watch?v=iVMIZy-Y3f8

DEMOGRATE WADA COLLEGE	MODERN EDUCATION SOCIETY'S Nowrosiee Wadia College, Pune (Autonomous) NEP	CELEE WADA
Contraction of Lines		REAL PROPERTY OF
	Master of Science in Riotechnology	
	SEMESTER –III Major Paper 13 (Practical)	
Year – II		Credits 4
Somostor	Paper No- PBTMJ233	Hours 60
- III	Name of Paper- Practicals in Plant and Animal Biotechnology	110015 00
Course Outo	comes (COs)	1
On completi	on of the course, the students will be able to:	
• Learn	In vitro induction of somatic embryogenesis.	
 Learn Initiate 	Induction of Androgenesis <i>in vitro</i> Micro-propagation technique	
 Perform 	m preservation of in vitro cultures	
• Develo	op of Suspension culture	
Sr. No.	COURSE CONTENT / SYLLABUS	No of practical
1.	<i>In vitro</i> induction of somatic embryogenesis and preparation of artificial seeds	2
2.	Protoplast isolation and Fusion from plant material	2
3.	Micro-propagation: Initiations, multiplication, subculture, and Hardening	2
4.	Agrobacterium-mediated gene transformation	1
5.	Preparation of animal cell culture media.	1
6.	Isolation and culture of splenocytes.	1
7.	Cell counting and viability.	
8.	Primary cell culture using chick embryo.	1
9.	Cell passaging.	1
10.	Cryopreservation of cell.	1
11.	Nuclear and mitochondrial staining of cells. Cell	1
12.	viability assay using MTT.	1

	MODERN EDUCATION SOCIETY'S Nowrosjee Wadia College, Pune (Autonomous) NEP	REAL PROPERTY OF
	Master of Science in Biotechnology SEMESTER -III Major Paper 14 (Practical)	
Year – II		Credits 4
Comoston	Paper No- PBTMJ234	Houng (A
- III	Name of Paper- Practical's in Immunology	Hours ov
Course Out On complet Anal Ackr	comes (COs) ion of the course, the students will be able to: yze antigen antibody interactions. nowledge quantitative and qualitative techniques	
Sr. No.	COURSE CONTENT / SYLLABUS	No of practical
1	Determination of blood groups and Rh factor.	1
2	Determination of agglutination reaction with reference to the Widal test	1
3	Determination of precipitation with reference to VDRL.	1
4	Determination of haemagglutination <i>Treponema pallidum</i> Haemagglutination test.	1
5	Detection, Identification, and Quantification of antibodies by ODD (Ouchtlerlony Double Diffusion).	1
6	Separation and characterization of serum-by-serum electrophoresis method.	1
7	Demonstration of Antigen-Antibody reaction by counter-current Immunoelectrophoresis and Rocket Electrophoresis.	2
8	Separation and characterization of lymphocytes from blood.	1
9	Determination of Antigen-Antibody reaction by ELISA- DOT and PLATE	2
10	Immunoprecipitation	
11	Determination of Rapid Plasma Reagin (RPR)	1
12	Purification of IgG from Bovine Serum Albumin	1
	Differential count of WBC	1
	Detection, Identification, and Quantification of Antibodies Single Radial Immunodiffusion	1

HOWROBLEE WADA COLLEGE	MODERN EDUCATION SOCIETY'S	TEWADIA
	Nowrosjee Wadia College, Pune (Autonomous) NEP	ROCECTION OF
	Master of Science in Biotechnology	
	SEMESTER –III Major Paper 15(A) (Theory)	
Year – II	Deper No. DPTM1225(A)	Credits 4
Semester	raper No- r D I WIJ 255(A)	Hours 60
- III	Name of Paper- Genomics and Proteomics	
Course Out	comes (COs)	
On complet	ion of the course, the students will be able to:	
• Learn	Genome mapping with the help of	
	the applications of generations and proteomics in	
Know differe	ent fields of Biotechnology	
Apply	the knowledge in research	
Sr. No.	COURSE CONTENT / SYLLABUS	Lectures
Unit –I	Basics of genomics and proteomics	
	• Brief overview of prokaryotic and	-
	• Eukaryotic genome organization; Chromatin organization;	5
	• Extra-chromosomal DNA: bacterial plasmids,	
	intochondria andemoroprast.	
Unit –II	Types of genomics	
	• Comparative genomics - Goals, bioinformatics of	7
	• Genome annotation, methods and limitations.	/
	 Structural genomics – Goals, methods, applications. Eulering genomics – Goals methods applications 	
	• Punctional genomics –Goals, methods, applications.	
Unit –III	Genome mapping	
	• Genetic and physical maps;	
	• Methods and techniques used for gene mapping,	0
	• Physical mapping, linkage analysis, cytogenetic	8
	techniques,	
	• FISH technique in gene mapping, comparative gene mapping	
	Metagenomics	
	Toxicogenomic	
	• Pharmacogenomics	
	Basic research	8
	Medical Genetics	

Unit –V	Introduction and concept of proteomics	
	Protein structure –Function	
	relationship,	8
	Types of Proteomics:	
	Protein expression proteomics	
	• Structural Proteomics,	
	Functional Proteomics	
Unit -VI	Techniques in Proteomics	
	Protein Isolation and Separation techniques	
	• Structural analysis of proteins- X-ray crystallography and	8
	• NMR spectroscopy	
	• 2 D electrophoresis	
	• Peptide mapping and sequencing	
	• Mass Spectrometry: Matrix Assisted Laser Desorption/Ionization	
	-Timeof Flight (MALDI-TOF), ESI Tandem,	
	• Ion Trap, Peptide mass fingerprinting	
	• LC-MS, (SILAC) - Chemical tagging, fluorescence, radiolabeling	
Unit -VII	Functional genomics and proteomics	
	• Transcriptome analysis,	
	• functional annotation of genes,	
	• Contig assembly, mining functional genes in the genome.	8
	• gene function	
	 protein-protein and protein-DNA interactions; 	
	 protein protein and protein Divirinteractions; protein chips and functional proteomics: clinical and 	
	biomedical	
	bioinculcul	
Unit -VIII	Applications of Proteomics	
	Protein expression profiling	
	• Protein-protein and Protein-DNA interaction (Chip	
	• Technique)	8
	• Methods for detection of protein-protein interactions -	
	• Yeast 1, 2 and 3 hybrid systems – Phage display –	
	• Proteomics and Protein microarrays, databases and	
	alliedbioinformatics tools	

References

1. Primrose, S. B., Twyman, R. M., Primrose, S. B., and Primrose, S. B. (2006). Principles of Gene Manipulation and Genomics. Malden, MA: Blackwell Pub.

2. Liebler, D. C. (2002). Introduction to Proteomics: Tools for the New Biology. Totowa, NJ: Humana Press.

3. Campbell, A. M., and Heyer, L. J. (2003). Discovering Genomics, Proteomics, and Bioinformatics. San Francisco:Benjamin Cumming

4. Hubert Rehn. (2006). Protein Biochemistry and Proteomics, Acadamic Press.

https://www.ncbi.nlm.nih.gov/books/NBK2

	MODERN EDUCATION SOCIETY'S Nowrosjee Wadia College, Pune (Autonomous) NEP Mactor of Science in Biotechnology	REAL PROPERTY AND A
	SEMESTER –III Major Paper 15(B)(Theory)	
Year – II	Paper No- PBTMJ235(B)	Credits 4
- III	Name of Paper- Nanobiotechnology	Hours 60
Course Out	tcomes (COs)	I
On complet • Learn • Enhan • Learn • Acqui	tion of the course, the students will be able to: the Basics of Nanoscience technology ce knowledge of synthesis and characterization of nanoparticles advanced applications of Nanobiotechnology re the knowledge of review writing and casestudies of research related to nano	biotechnology.
Sr. No.	COURSE CONTENT / SYLLABUS	Lectures
	 History of nanotechnology and its emergence, Concept of Nano-biotechnology, Types of nanoparticles and Their Properties: Quantum dots, Polymeric nanoparticles, Metal nanoparticles, Nano materials, metal oxide nanoparticles, Dendrimers, Liposomes, Composites Nanopore Technology Current developments in Nano biotechnology 	8
Unit –II	 Methods for synthesis of Nano materials Top Down and Botton Up Approach Physical methods – Mechanical and vapour method Chemical method – Colloids and colloids in solution Synthesis by colloid method, Sol-Gel Methods, Biological synthesis – Use of Microorganisms like Fungi, yeast (eukaryotes), or bacteria actinomycetes (prokaryotes) Use of Plant extract and enzyme Using DNA templates, membranes, viruses, diatoms 	10

Unit –III	Physiochemical characterization of Nanomaterials	
	 Optical, Electron, Scanning, Photon, Ion Particle, thermodynamic Probe characterization SEM, TEM, X-ray diffraction, light scattering- DLS, NTA; Zeta potential 	8
Unit –IV	Environmental impact of nanomaterial	
	 Exposure and risk assessment–Mechanism of toxicity, health impact Genotoxicity, cytotoxicity, ecotoxicity 	8
Unit -V	Applications of Nano-Materials in Medicine	
	 Nanomedicines, Targeted Drug Delivery, Disease diagnosis at proteomic level, Biosensors (Nucleic acid based, protein-based) Applications in Gene therapy Cancer Biology. Bionanomachines and current research Nanobiotechnology in enhancing CRISPR-mediated detection Protein Targeting - Small Molecule/Nanomaterial - Protein Interactions 	10
	Nanomaterial-cell interactions of Surface Modification, enhanced permeation through various anatomical barriers	
	Nanotechnology for surgeons	
Unit -VI	 Applications of Nanobiotechnology in Agriculture Nanosensors Nanoencapsulation Recycling Agricultural Waste Soil improvement Water purification Nano-fertilizers 	8
Unit -VII	Other applications	
	 Defense sector Fabrics and textiles industries Water pollutants from industry waste and current research Space science and engineering Food industry (Food Processing, Food Packaging, detection of pathogens) 	8

References

- The Chemistry of Nanomaterials: Synthesis, Properties and Applications, 2 Volume Set C. N. R. Rao (Editor), Achim Müller (Editor), Anthony K. Cheetham (Editor), 2004. Wiley Publisher.
- 2. Nanobiotechnology: Concepts, Applications and Perspectives, Christof M. Niemeyer (Editor), Chad A. Mirkin (Editor), Wiley Publishers, April 2004.

- 3.Nanotechnology: A Gentle Introduction to Next Big Idea, Mark Ratner and Daniel Ratner, Low Price edition, Third Impression, Pearson Education.
- 4. Nanoparticles: From theory to applications G. Schmidt, Wiley Weinheim, 2004
- 5.Nanochemistry: A Chemical Approach to Nanomaterials Royal Society of Chemistry, Cambridge UK 2005.
- 6. Jain K.K, Nanobiotechnology in Molecular Diagnostics Current Techniques and applications, Taylor and Francis Publications 2006. 2.
- 7. Kebt106.pdf (ncert.nic.in)
- 8. https://www.researchgate.net/publication/338330774_Application_of_Nanotechnology_

SCHHOBJEE WADIA COLLEGE	MODERN EDUCATION SOCIETY'S	
	Nowrosjee Wadia College, Pune (Autonomous) NEP	REAL PROPERTY OF
	Master of Science in Biotechnology SEMESTER _IV Major Paper 16 (Theory)	
X7 II	SEMIESTER -IV Major Laper 10 (Theory)	C 14- 4
Year – 11		Creans 4
Semester	Paper No- PBTMJ241	Hours 60
		110013 00
- 1 V	Name of Paper-Bioinformatics	
Course Out	comes (COs)	
On complet	ion of the course, the students will be able to:	
• Know	the basics of bioinformatics	
Devel	op Python modules for bioinformatics applications	
Access Identif	wide variety of biologically relevant data	
• Identii	y sequence similarity	domains from
• Evalua sequer	aces using bioinformatics tools	
Sr. No.	COURSE CONTENT / SYLLABUS	Lectures
Unit -I	Outline of Bioinformatics and AI	
	• Introduction and Applications of Bioinformatics.	
	 Introduction to single letter code of amino acids. Symbols 	05
	used innucleotides.	
	• Data retrieval from Entrez and SRS.	
	• Artificial Intelligence (AI) Introduction: Definition,	
	Challenges and Applications. Role of AI in bioinformatics.	
Unit -II	Rielogical Databases	
	• Types of databases (Primary Composite and Secondary)	
	 Nucleic acid databases (NCBL DDBL GENBANK and EMBL) 	
	 Protein databases (PDB, Swissprot, and UniProt). 	10
	 Structure databases (CATH_SCOP_and PDBsum) 	
	 Literature database: PubMed. MEDLINE 	
	• plasmoDB .ECDC. TIGR. TAIR .Hovergen	
	r	
Unit III	Saguanaa Alianmant	
	Introduction to sequence alignment	
	 scoring matrices:- PAM . BLOSUM. Dot blot 	
	• Local and Global alignment, Needleman- wunsch algorithm.	08
	Smith-waterman algorithm,	
	Multiple sequence alignment, FASTA, BLAST.	

Unit -IV	Phylogenetic Analysis	
	• Evolutionary analysis – steps and construction of	
	Phylogenetic tree-Cladistics and Phenetic methods-	
	Clustering methods - Rooted and Unrooted tree	8
	representation.	
	• Methods for constructing phylogenetic tree:- distance-based	
	methods, neighbor-joining, maximum parsimony, fitch and	
	Margoliash method, UPGMA Method	
Unit -V	Introduction to Python	
	Starting with Python	
	variable, lists, tuples, operators, conditional statements, loop and	8
	loopstatements, file handling and operations FASTA, CSV file	
	fast	
Unit -VI	Data Generation Tools	
	• What is data generation and its significance	
	• Basic tools of data generation: (NGS Genome	4
	Sequencing, Protein sequencing, NMR Spectroscopy,	
	and Microarray)	
Unit -VII	Sequence Visualization Soft wares	
	Rasmol, SPDBV	
	Homology Modelling	8
	• Comparative modeling of proteins, comparison of 3D	
	structure, homology, steps in homology modeling, tools,	
	database, side chainmodeling, loop modeling	
Unit -VIII	Drug Designing:	
	• General approach to discovery of new drugs, lead	
	discovery, lead modification, '	
	• Physiochemical principles of drug action,	
	• Drug stereo chemistry, drug action,	9
	• 3D database search, computer aideddrug design,	
	• Docking, molecular modeling in drug design, structure	
	based drug design, pharma, cophores QSAR	

References:

- 1. David. W. Mount (2001): Bioinformatics Sequence and Genome Analysis, Cold spring Harbor Lab. NY.USA
- 2. Martelli, A. (2006). Python in a Nutshell. O'Reilly Media, Inc.
- 3. Sedgewick, R., Wayne, K., andDondero, R. (2015). Introduction to programming in Python: An interdisciplinary approach. Addison-Wesley Professional
- 4. P. Narayanan, Bioinformatics: A Primer, New Age International Publishers.
- 5. Harshawardhan P. Bal, Bioinformatics Principles and Applications, Tata McGraw-Hill Publishing CompanyLtd.
- 6. Baxevanis Andreas D. Bioinformatics: A Practical Guide to the Analysis of Genesand Proteins, Latest Edition. Publisher: New York, John Wiley and Sons, Inc.
- 7. Teresa Attwood, Parry-Smith David J. Introduction to Bioinformatics. Publisher:Pearson Education (Singapore) Pte.Ltd., Latest Edition

M.Sc. Syllabus, Department of Biotechnology, Nowrosjee Wadia College, Pune 01

- 8. Gibas Cynthia, JambeckPer. Developing Bioinformatics Computer Skills. Publisher:Shroff Publishers and distributors O'Reilly Media, Inc., Latest Edition
- 9. <u>https://books.google.co.in/books/about/Fundamentals_of_Bioinformatics.html?id=3WnAiWQuL8kCa_ndredir_esc=yhttps://www.ncbi.nlm.nih.gov/books/NBK569562/</u>

	MODERN EDUCATION SOCIETY'S Nowrosjee Wadia College, Pune (Autonomous) NEP	R OF BIOTECHINGS
	Master of Science in Biotechnology	
	SEMESTER –IV Major Paper 17 (Theory)	
Year – II	Paper No- PBTMJ242	Credits 4
Semester		Hours 60
- IV	Name of Paper- Bioprocess Engineering	
 Clear indust Gain a 	rial level. n insight into fundamentals and carry out elementary calculations regarding sca	ile up.
Sr. No.	COURSE CONTENT / SYLLABUS	Lectures
Unit -I	 Historical development of bioprocess technology: An overview of traditional and modern applications of biotechnological processes, General requirements of fermentation processes, Basic design and construction of fermenter and ancillaries, Main parameters for monitoringand control of fermentation processes 	4
Unit -II	 Bioreactors: Operation of bioreactors; Batch, Fed-batch and Continuous bioreactors, Immobilized bioreactor operation, Sterilization, Aeration, Agitation and types of impellers, sparger, oxygen transfer in bioreactors and power requirement. 	3

 materials used in fermentation industry and their pretreatment, Mediumfor plant cell culture and animal cell culture. Medium design of commercial media for industrial fermentations- Plackett burman design, response surface methodology, simplex design 	Unit -III	 Engineering principle of bioprocessing- Upstream and downstream production, Bioprocess design, and development from lab to industrial scale. Microbial, animal and plant cell culture platforms, Different raw materials used in fermentation industry and their pretreatment, Mediumfor plant cell culture and animal cell culture. Medium design of commercial media for industrial fermentations-Plackett burman design, response surface methodology, simplex design 	8
---	-----------	---	---

Unit -IV	Scale up, Operation and Control of Bioreactors:	
	• Concepts of variousbioreactor configurations, scale-up, various	_
	criteria for scale-up, scale-down, bioreactor instrumentation and	
	Control.	
Unit -V	Kinetics of substrate utilization and product formation:	
	 Ideal reactorsfor kinetics measurements. High-performing reactors and industrial reactors. 	8
	• Kinetics of balanced growth. Structured kinetic models. Product formation kinetics.	
	• Segregated kinetic models of growth and product formation.	
Unit -VI	Microbial strain improvement:	
	• Important strains and pathways - Mutation, Protoplast fusion, parasexual cycle and genetic engineering for strain improvements, product formation, inhibition pathways and their regulations.	
	• Applications in medicine, Agriculture and Industry.	
	 Industrially important microorganisms – preservation and Culture collection centers. 	8
	Aeration and agitation:	
	• Effect of aeration and agitation on fermentation, Oxygen requirement and oxygen supply, Oxygen transfer kinetics; Determination of KLa value; Effect of agitation and microbial biomass on KLa value; Newtonian and non-Newtonian fluids; Foam and antifoams, their effect on oxygen transfer.	

Unit -VII	Modeling of fermentation processes and Process Economics:	
	 Installation Qualification (IQ), Operational Qualification (OQ) and Performance Qualification (PQ) for laboratory instruments. Methods of validation and calibration of equipment. 	7
	• Documentation-importance and significance.	
	• Description of industrial processes for Bio-chemicals production,	
	Processflow sheeting and Process economics. Fermentation	
	economics- market potential, some effects of maintenance of	
	legislations on production of antibiotics and recombinant proteins.	

References:

- 1, Encyclopedia of bioprocess technology. Vol 1-5. (1999). Flickinger, M.C. and Drew, S.W.(Ed).
- 2. Casida LE. (1991). Industrial Microbiology.1st edition. Wiley Eastern Limited.
- 3. Bioprocess engineering: Downstream processingand recovery of bio products, safety in biotechnology and regulations. (1990). Behrens, D. and Kramer, P. (Ed).
- 4. Fundamentals of biotechnology. (1987). Prave, P., Fanst, V.Sitting, W. and Sukatesh, D.A. (Ed.)
- 5. Patel AH. (1996). Industrial Microbiology. 1st edition, MacmillanIndia Limited.
- 6. Jackson AT, Bioprocess Engineering in Biotechnology, Prentice Hall, EngelwoodCliffs, 1991.
- 7. Bioprocess Engineering Principles" by Pauline M.Doran, Academic Press.
- 6. Biochemical Engineering- S. Aiba , A.E. Humphray, University of Tokyo Press
- 7. https://biokamikazi.files.wordpress.com/2013/09/principles_of_fermentation_technologystanburry_whittaker.pdf
- 8. NPTEL Course "Industrial Biotechnology" https://nptel.ac.in/courses/102/105/102105058/
- 9. https://swayam.gov.in/

	MODERN EDUCATION SOCIETY'S Nowrosjee Wadia College, Pune (Autonomous) NEP	REAL PROPERTY OF
	Master of Science in Biotechnology	
X 7 X 7	SEMESTER –IV Major Paper 18 (Practical)	a 1 ⁴ 4
Year – 11	Dener No. DDTM/1242	Credits 4
Semester	Paper No- PB1WJ245 Name of Paper	Hours 60
- IV	Practicals in Rightformatics and Rightformatics Engineering	
	Tracticals in Diolitor matters and Dioprocess Engineering	
Course Out	comes (COs)	
On completion	on of the course, the students will be able to:	
• Gain k	cnowledge of basic of animal tissue culture technique	
Know	ledge of media, there fundamentals, preservations etc.	
• Learn	process of Lab scale production of metabolites	
Acquir	re the knowledge of fermentation media inoculum preparation. Scale up proc	esses and
with th	ne various downstream processes of fermentation industries	lesses and
	-	
Sr. No.	COURSE CONTENT / SYLLABUS	No of Practical
1	Introduction to Biological databases and retrieving the Information Sequence.	1
2	Similarity searching using BLAST	1
3	Multiple Sequence alignment and Phylogenetic analysis.	1
4	Counting of Hydrophobic and Hydrophilic amino acid in a protein sequence using Biopython.	1
5	Protein structure visualization using Pymol.	1
6	Molecular Docking.	1
7	Demonstrate of Sequence submission process in NCBI-Genebank	1
8		
	Study of Bioreactor and its essential parts.	1
9	Screening for biomolecule producers (amylase/ acetic acid/lactic acid/antibiotic).	2
10	To study lab scale production of any two biomolecules (Antibiotics, Lactic acid, citric acid, acetic acid, enzymes etc.)	

11	To study the effect of various factors (pH, Temperature, agitation, etc.) on	2
	Biomass production	
	Product Formation	
10	Substrate utilization	1
12	Recovery and Assay of product formed (Bioassay or Enzyme assay).	1
13		
	Paper chromatography of fermentation broth for the presence of sugars and amino acids	1
14	Visit to fermentation industry and Report writing.	1

UE WARA	MODERN EDUCATION COCLETVIC	
	MODERN EDUCATION SOCIETY'S Nowrosjee Wadia College, Pune (Autonomous) NEP	HE WANK OF
	Master of Science in Biotechnology SEMESTER –IV Major Paper 19(A)((Theory)	
Year – II		Credits 4
	Paper No- PBTMJ244(A)	
Semester - IV	Name of Paper-Medical and Forensic Biotechnology	Hours 60
Course Out	comes (COs)	
On complet • Gain t	ion of the course, the students will be able to: he knowledge of History, Different Domains, Needs, and Scope of Forensic	c Science
• Advan	cement in the field of medical science and its application to forensic	
Biotec	hnology	
• Know	the Medico-legal Aspects and Recent trends in forensic science	
Sr. No.	COURSE CONTENT / SYLLABUS	Lectures
Unit -I	 Basic of Forensic Science: Introduction, Definition, need, signification, and scope of ForensicScience. Principles of Forensic Science History and Development of Forensic Science in India and Abroad. Organization set up of Forensic Science Laboratory: Structure andfunction of State and regional Forensic Science Laboratory, CentralForensic Science Laboratory and facility provided, Mobile Forensic Science Laboratory. Directorate of Forensic Science Service. Police and Forensic scientist relationship, the role of FSL in criminal investigation, the relationship betweenforensic expert and judiciary officer, Importance of FSL, National andInternational scenario of FSL, facilities provided in forensic science laboratory. 	8
Unit -II	 Domains in Forensic Science: Forensic Biology, Forensic Medicine, Forensic Toxicology, ForensicOsteology and Odontology, Forensic Physics, Forensic Photography, Ballistics, Fingerprint, Questioned Documents, Forensic Psychology, Forensic Anthropology, Wildlife Forensic, DNA profiling, ComputerForensics, etc., Functions of Forensic Scientist, Police officers, Prosecution, Judicial Officers and Medico-legal expert etc. Ethical issue in Forensic Science: Definition of ethics, professional standards for the practice of Criminalistics sanction against experts for unethical conduct 	7

	59	
Unit -III	 Microbial Forensics Definition of microbial forensics, Applications Microbes of forensic importance (Bacillus anthracis, Yersinia pestis, Francisella tularensis, Brucella spp., Burkholderia Pseudomallei, Clostridium botulinum, Listeria monocytogenes) Fungi of forensic importance (Opportunistic mycoses, Chytridiomycotazygomycota, Aspergillus fumigates, microsporidum, pneumocytosis jiroveci, Asp.flavus and Candida sp.) Microbial forensic tools. Dynamics of disease transmission and Outbreak Investigation. Deliberate introduction of a biological agent. Forensic Aspects of Biological Toxins Microbial Forensic Analysis of Trace and Unculturable Specimens 	8
Unit -IV	 Medico-legal Autopsy: Death and its Causes- External examination of deceased body- InternalExamination Determination of time since death and cause of death. Injuries-Classification-Medico-legal aspects of injuries. Post-mortem changes collection of post-mortem samples andPreservation. 	7
Unit -V	 Forensic Analysis: Examination of Biological Materials: Examination of Hair, Fibres, Diatoms, plants materials, human tissues. Examination of Body Fluid: Blood, Semen and Saliva. Forensic Importance of Insects: Insects of forensic importance. indicators of time of death stages of insect development and comparative decomposition of human body colonization - Evidence collection of insects - Territorial and Aquatic Insects. DNA Fingerprint Technique and Examination of Biological Traces: Liquid blood, blood stains, and swabs, semen, Seminal stains, tissues, Bones, Hairs, Teeth, Saliva, Skeletal remains. Toxicological Investigations: Poisons - Definition, Forms of Poison - Physical, Chemical and Mechanical state. Introduction with examples of-Neurotoxic Poisons-Cerebral and Spinal, Cardiovascular Poisons, Asphyxiants, miscellaneous poisons - Pesticides, Pharmaceutical drugs, Petroleum poisons, Food poisons, radioactive poisons. 	8

Unit -VI	Forensic Medicine:	
	• Introduction to Forensic Medicine: Definitions of Forensic	
	Medicine.	
	• Medical Jurisprudence: Definition, aims, concept, fundamental	
	aspects	
	• Scope of medical Jurisprudence, Legal procedure in	_
	criminal court, medical evidence and medical witness,	7
	Legal aspects of medical practices, medical negligence,	
	Consent in medical practices.	
	Medical evidence documentation	
Unit -VII	Emerging Microbial Forensic Techniques-	
	• PCR, Terminal Restriction Fragment Length Polymorphism (TRFLP),	
	• Amplified Fragment Length Polymorphism (AFLP).	
	• Single Stranded Conformation Polymorphism Analysis (SSCP).	
	• Thermal and Desaturating Gradient Gel Electrophoresis	8
	(TGGE, DGGE), Amplified Ribosomal DNA Restriction	
	Analysis (ARDRA).	
	• Randomly Amplified Polymorphic DNA (RAPD).	
	• Non-PCR DNA Fingerprinting Techniques with Applicability	
	in Forensic Studies- Restriction Fragment Length	
	Polymorphisms (RFLP) and Ribotyping.	
	• Forensic Interpretation of DNA Data, Isotopic Testing and	
	Correlation to Contaminant Source	
Unit -VIII	Recent Trends in Forensic Science-	
	• Environmental Forensics: Definition, Legal processes	
	involving environmental forensic science. Geo-forensics	
	Global PositioningSystem; Basic principles and	
	applications.	-
	• Biometrics in Personal Identification: Introduction, Concepts of	/
	Biometric Authentication, Role in person Identification,	
	Techniques and Technologies (Finger Print Technology, Face	
	Recognition, IRIS, RetinaGeometry, Hand Geometry, Speaker	
	Recognition, Signature Verification and other forensic related	
	techniques).	
	• Bioterrorism: Definition, Concepts of Biosecurity and microbial	
	forensics, Weapons of mass destruction (WMD), mass-casualty	
	weapons	
	(MCW), NBC and CBRNE, Dirty Bombs.	

REFERENCE:

- 1. Microbial Forensics (2005) Second Edition Bruce Budowle, Steven E. Schutzer, Roger G. Breeze, Paul
- 2. S. Keim and Stephen A. Morse. Elsevier
- 3. Forensic Biology by Mr.Srikant Ladha, Dr.Trupti Khedkar and Dr.Rukmani Krishnamurthy
- 4. Krishnamurthy, R., Introduction to Forensic Science in Crime Investigation, 2011, Selective and Scientific Books, New Delhi.

- 5. Godkar P. B and Godkar D. P. Textbook of Medical Laboratory Technology, II Edition, Bhalam Publications
- 6. Textbook of Microbiology: R. Ananthanarayan, C. K. Jayaram Panikar, University Press. 2
- 7. A textbook of Microbiology: P. Chakraborty
- 8. Text book of pathology: Robbins and Cotran, Vol. 1 and 2, Tenth Edition, Elsevier Publication.
- 9. Pathologic basis of disease: M. K. Singh and Vinay Kumar, Vol. 1 and 2, 10th edition, Elsevier.
- 10. Text book of General pathology: Bhende and Deodhare Part I and II.
- 11. https://www.youtube.com/watch?v=7onjVBs

SONHOBJEE WADIA COLLEGE	MODERN EDUCATION SOCIETY'S	
	Nowrosjee Wadia College, Pune (Autonomous) NEP	REAL PROFECTIVE
	Master of Science in Biotechnology	
	SEMESTER –IV Major Paper 19(B)(Theory)	
Year – II		Credits 4
	Paper No- PBTMJ244(B)	
Semester		Hours 60
- 1V	Name of Paper- Virology and Toxicology	
Course Out	comes (COs)	
On complet	ion of the course, the students will be able to:	
• Study	the scope of Toxicology	
Acquir Know	e knowledge on the types of Toxicology	
• Know	the basic concepts of plant animals. Viruses, and bacteriophages along with	their
multip	lication in host cells	uicii
manup		
Sr. No.	COURSE CONTENT / SYLLABUS	Lectures
Unit -I	History: History, origin, and evolution of viruses, pioneers of Virology.	
	Nomenclature and classification of viruses:	
	• Criteria used for naming and classification,	
	• Current ICTV classification of viruses of bacteria, plants and	
	animals, and humans.	8
	Morphology and properties of viruses:	
	 Flysical- morphology and structure, sedimentation electrophoretic mobility buoyant density; 	
	Biochemical-chemical	
	 composition, nucleic acids, proteins, enzymes, lipids, 	
	carbohydrates, polyamines, cations,	
	• virus stability; Biological- Host range, inclusion bodies,	
	transmission.	
	Transmission of viruses:	
Ilait II	Non-vector and vector mode of transmission of viruses	
01111 -11	 Isolation, cultivation, and maintenance of viruses. Isolation and cultivation of plant and animal viruses (experimental 	
	plants and tissue culture, experimental animals, embryonated eggs.	
	organ cultures primary and secondary cell cultures suspension	7
	and monolayer cell cultures cell strains cell lines)	/
	Purification of viruses:	
	• Extraction of viruses from tissues clarification and concentration	
	of viruses in clarified extracts by physical and chemical methods	
	further purification of viruses by rate zonal / equilibrium density	
	gradient centrifugation Criteria of virus purity Quantitation and	
	Preservation of purified virus preparations.	
	- reservation of Partition (mus Preparations)	

Unit -III	Major characteristics of Virus families:	
	• Adenoviridae, Bromoviridae, Bunyaviridae,	
	Caulimoviridae, Flaviviridae, Geminiviridae,	
	Hepadnaviridae, Herpesviridae, Orthomyxoviridae,	
	• Biology of sub-viral agents: Satellite viruses, sat-RNAs, DI	7
	particles, viroids, virusoids, and prions.	
Unit -IV	Bacteriophages:	
	• Biology of major RNA (MS2, $Q\beta$) and DNA (T4, lambda, $\emptyset x174$,	
	M13) Bacteriophages,	
	• Replication of M13, T4 and lambda phages; biology of	
	cyanophages.	
	Plant Viruses:	8
	• TMV- general characters- morphology-replication-RNA as its	
	initiator of infection. Cauliflower mosaic virus; Transmission of	
	plant viruses;	
	• Common viral diseases of crop plants- paddy, cotton, tomato,	
	andsugarcane. Viruses of cyanobacteria, algae, fungi, and insects.	
	• Epidemiology, Diagnosis, and Treatment of Viral Diseases;	
	ViralVaccines and Antiviral agents	
	Animal Viruses:	
	• Biology and pathogenesis of SARS, Hepatitis A and B Viral	
	Infections.	
	• Comet assay	
Unit V	Introduction to tovicelegy	
Umt - v	History and scope of toxicology	
	 Source of toxicants 	
	 Classification of toxic agents 	
	Mechanism of toxicity:	
	• Toxicant delivery reaction with the target molecule cellular	7
	dysfunction inappropriate repair and adaptation	
	• Cutotovicity mechanisms of call death mitochondrial dusfunction	
	• Cytotoxicity mechanisms of cen death initochondrial dysfunction.	
	 Different types of toxicities (acute sub-acute chronic sub- 	
	chronictoxicity)	
	Types of Toxicology:	
	General Toxicology, Generic Toxicology, Organ Toxicity	
TT •4 T7T		
Unit -VI	Metabolism of toxicants:	
	• Flase I Reactions, Microsofial Oxidation NonlineTosofial ovidations, Reduction Reactions, Hydrolysis, Epovide Hydration	
	coovidation	
	 Phase II Reactions: Conjugation reactions. Methyl transferases 	8
	and Acylation	
	 Reactive Metabolites: nature stability and fate of reactive 	
	metabolites	
	 Flimination of Toyicants: renal henatic and respiratory 	
	elimination of Toxicants. Tenai, hepatic, and respiratory	
	Non target organ toxicity: Chemical carcinogenesis mechanisms	
	• Non target organ toxicity. Chemical carcinogenesis mechanisms Of carcinogens.	

M.Sc. Syllabus, Department of Biotechnology, Nowrosjee Wadia College, Pune 01

Unit -VII	Toxicology Testing:	
	• Food toxicology: introduction, safety standards for foods and food	
	ingredients and contaminants.	7
	In Vivo Toxicology:	,
	• Testing of acute, sub chronic and chronic toxicity.	
	In Vitro testing:	
	• Cell Culture Methods, Ames forward mutation assay, Assessing	
	genotoxicity: mitotic index, chromosomal aberrations,	
	micronucleus assay, cytotoxicity, and apoptosis assay.	
	Neurotoxicity testing.	
	• A brief outline of methods of toxicity assessment. Animal use in	
	toxicology and animal welfare.	
Unit -VIII	Carcinogenicity and Genotoxicity	
	• Causes of cancers	
	History	
	• What is a Carcinogen?	
	• Tumor types	
	Classical Mechanism of Tumor Formation	
	• Testing for Cancer	
	Toxicity of Cancer Treatments	8
	• Overview of genotoxicity	

References:

- 1. Principles of Toxicology by Paul Héroux, PhD
- 2. Principles of Toxicology Testing By Frank A. Barile'
- 3. Virology (2019), P. Saravanan.
- 4. Prescott, L.M., Harley, J.P. and Klein, D.A. (1999)
- 5. Microbiology. McGraw Hill, New Delhi.
- Roitt, I.M. (1998) Essential Immunology. Blackwell Scientific Publications, Oxford.
- 7. Weir, D.M. and Steward J. (1993) Immunology, 7th Edn. ELBS, London.
- 8. http://nptel.ac.in/
- 9. https://www.google.com/NPTEL--Biotechnology--General-Virology
- 10. Toxicology Screening StatPearls NCBI Bookshelf (nih.gov)
- 11. <u>Carcinogenicity assessment: Addressing the challenges of cancer and</u> <u>chemicals in the environment - PMC (nih.gov)</u>
- 12. <u>Genotoxicity testing and recent advances | Genome Instability and Disease</u> (springer.com)