

Modern Education Society's

Nowrosjee Wadia College

(AUTONOMOUS)

NAAC Accredited A+ with CGPA 3.51

Affiliated to the Savitribai Phule Pune University (Formerly University of Pune)

Four Year B.Sc. (Honors) Degree Program in Computer Science (Formerly known as B. C.S.) (Faculty of Science & Technology) B.Sc. (Computer Science)

National Education Policy (NEP) Syllabus (Amended in third BOS Meeting) To be implemented from Academic Year 2024-2025

Title of the Course: B.Sc. (Computer Science)

Preamble for the Syllabus:

In compliance with the directives from the University Grants Commission, under the autonomous status of the college, the syllabus for four-year B. Sc. Computer Science at the undergraduate level is revised and reframed as per the National Educational Policy (NEP 2020) curriculum framework. Nowrosjee Wadia College has decided to change the syllabi for the degree of B.Sc. from June 2023, as the college has already shifted to the autonomous status from the academic year 2022-2023. The present syllabus is prepared by the Board of Studies in Computer Science, Nowrosjee Wadia College, taking into consideration the present relevance and application of the various branches of Computer Science. While preparing this syllabus the U.G.C. model curriculum (LOCF) and existing syllabus given by Savitribai Phule Pune University is followed.

It aims to provide students with thorough knowledge of theoretical and practical aspects of Computer Science. The objective of the course is to prepare students to undertake careers involving problem solving using Computer Science and technologies, or to pursue advanced studies and research in Computer Science. The syllabus which comprises of Computer Science subject along with that of the three allied subjects (Mathematics, Electronics and Statistics) covers the foundational aspects of computing sciences and also develops the requisite professional skills and problem solving abilities using Computing Sciences. The program creates opportunities of hands-on learning through projects and gives knowledge and practical experience of the latest technologies. It also encourages a student to work effectively as team member and demonstrate professional behaviour. On completion of this course, a student will not only develop a diverse set of skills to prepare for higher studies in Computer Science and for employment, but will also encourage students to launch their own start-ups or venture into new types of careers using their interdisciplinary training.

Objectives:

- To develop problem solving abilities using a computer.
- To build the necessary skill set and analytical abilities for developing computer-based solutions for real life problems.
- To train students in professional skills related to the software industry.
- To prepare necessary knowledge base for research and development in Computer Science.
- To help students build a successful career in Computer Science and to produce entrepreneurs who can innovate and develop software products.

PROGRAM OUTCOMES (POs):

The Bachelor of Science with Computer Science (BSc with CS) program enables students to attain by the time of graduation following 10 PO's. The course syllabi and the overall curriculum have been designed to achieve these outcomes:

Program	Short title	Description
Outcome		A Graduate student in Computer Science will be able
(PO)		to:
PO1	Knowledge outcome	Fundamental understanding of the principles of Computer
		Science and its connections with other disciplines
PO2	Problem Analysis and solution	Procedural knowledge that creates different types of professionals related to Computer Science,
PO3	Development of various allied skills	Demonstrate the aptitude of Computer Programming and Computer based problem solving skills with use of basic knowledge in applied subjects Statistics, Electronics and Mathematics. Ability to link knowledge of Computer Science with other two chosen auxiliary disciplines of study.
PO4	Modern Tool usage	Display the knowledge of appropriate theory, practices and tools for the specification, design, and implementation. Ability to formulate, to model, to design solutions, procedure and to use software tools to solve real world problems and evaluate .
PO5	Environment and Sustainability	Understand, critically analyse and attempt at finding the solutions to various environmental issues and obligate themselves towards sustainable development at the local, national and global context.
PO6	Communication and Leadership	Ability to present result using different presentation tools. Communicate proficiently and develop the quality of

		presentation, good communication, leadership, working in group/team as a member, and other extracurricular activities.
PO7	Research skills and Aptitude	Understand the concept of research, general research methods and is able to analyse, interpret and draw rational inferences. Ability to pursue higher studies of specialization. Ability to appreciate emerging technologies and tools.
PO8	Ethics	Understand professional ethics and human values. Display ethical code of conduct in usage of Internet and Cyber systems.
PO9	Societal Applications	Ability to formulate, to model, to design solutions, procedure and to use software tools to solve real world problems and evaluate. Attempts at analysing and inspecting varied socio- economic issues in computer culture perspective by applying the knowledge to the societal issues.
PO10	Life Skills	Recognise the scope of computers in terms of exploring the career opportunities, employment and life-long engagement in teaching and utilise the knowledge for publication for future academic endeavours.

Eligibility for the Course

XIIth Science or its equivalent examination with Mathematics. All other criteria are same as per Savitribai Phule Pune University rules.

Teaching Scheme:

- The course is a 3 year, 6 semesters full time under graduate course and 1 more year, 2 semester B. Sc. (CS) Honors course.
- The course follows the NEP pattern as per Savitribai Phule Pune University.
- 1 credit theory = 15 hours
- 1 credit practical = 30 hours = 4 hrs week per batch

MODERN EDUCATION SOCIETY'S NOWROSJEE WADIA COLLEGE, PUNE

(An Autonomous College Affiliated to Savitribai Phule Pune University)

NEP Course Structure and other details

For

B. Sc.(COMPUTER SCIENCE)

(Based on NEP 2020 framework)

(To be implemented from the Academic Year 2024-25)

B.Sc.

SEM	MAJOF	2	MINOR	OE	VSC,	/SEC	OJT/FP/C EP/CC/RP	AEC/VEC/ IKS	TOTAL
	Mandatory	Electi ve			VSC	SEC			
I	6 (2T+1P)	0	0	4	2 ST:P	2 ST:T	2 CC 2	6 AEC 2, VEC 2, IKS 2	22
II	6 (2T+1P)	0	2 (EL:T)	4 = (2 + 2)	2 ST:P	2 M:T	2 CC 2	4 AEC 2, VEC 2	22
	8 (3T+1P)	0	4 (EL: T + L)/ (MT: T + L)	2	2	0	4 FP 2, CC 2	2 AEC	22
IV	8 (3T+1P)	0	4 (EL: T + L)/ (MT: T + L)	2	0	2	4 CEP 2 CC 2	2 AEC	22
V	10 (3T+2P)	4CS(1T+1 P)	4 S/M/E	0	2 CS:P	0	2 FP/CEP	0	22
VI	10 (3T+2P)	4CS(1T+1 P)	2 S/M/E	0	2 CS:P	0	4 OJT	0	22
TOTAL	48	8	16	12	10	6	18	14	132
VII	12 (2T+2P)	4 CS(1 T+1P)	4 RM	0	2	0	0	0	22
VIII	12 (2T+2P)	4 CS(1 T+1P)	0	0	2	0	4 OJT	0	22
						l			

Structure showing Credits in each semester for a four year Under Graduate programme B. Sc. (Computer Science)

Abbreviations used throughout -

OE : Open Elective, VSC : Vocational Skill Courses, VEC: Value Education Courses, CC : Co-Curricular Courses, AEC: Ability Enhancement Course, IKS : Indian Knowledge System, OJT : On Job Training, FP : Field Project, CEP : Community Engagement Project **ST : Statistics, EL : Electronics, M : Mathema**

EVALUATION PATTERN :

Note : The Department follows all rules, regulations and procedure related to the examination decided by Examination Section of college.

- Each course shall be evaluated with Continuous Evaluation (CE) and Semester-end Examination (SEE) mechanism.
- (ii) Theory courses: Continuous Evaluation shall be of 15 marks and Final Assessment shall be of 35 marks.
- (iii) Practical courses: Continuous Evaluation shall be of 15 marks and Final Assessment shall be of 35 marks.
- (iv) To pass a course of 2 credits, a student has to earn minimum 20 marks out of 50, provided that he/she should earn minimum 6 marks in Continuous Evaluation (out of 15) and minimum 14 marks (out of 35) in End-Semester Examination. That is passing criterion is minimum 40% marks in the examination.
- (v) For Continuous Evaluation (out of 15 marks), There has to be one written test of 10 marks (Mid-Semester Examination). The remaining 05 marks shall be based on the continuous evaluation consisting of tutorial, viva, seminars, home-assignments, mini project, survey, group discussion etc.(on approval of Head of the Department) and performance and attendance in the lectures and labs.
- (vi) There shall be revaluation of the answer scripts of End-Semester Examination (out of 35 marks) of theory papers only, but not of internal assessment papers as per Ordinance No. 134 A and B.

PATTERN OF THE QUESTION PAPER

Continuous Evaluation (Theory papers)

- (1) As a part of Internal Evaluation, there shall be written test (Mid-Semester Examination) of 10 marks. Pattern of the question paper is as follows.
- (2) Continuous Evaluation (Mid-Semester Examination of 10 marks, Duration: 45 minutes)

Question No.	Total Marks	No. Of questions	Remarks
Q. 1.	05	Solve any 5 out of 7	Short answer / objective type of questions. Each question

			carry 1 mark.
Q. 2.	05	Solve any 1 out of 2 questions	Each question carry 5 marks

(3) Semester-End Examination for B. Sc. courses, out of 35 marks, shall be of 2 hours duration. The pattern of the question paper will be as decided by the examination section of the college.

AWARD OF GRADES AND GRADE POINTS

The mapping of percentage to letter grade and grade point (for each course) is given in the following Table.

Sr. No.	Grade Letter	Grade Point	Marks
1.	O (Outstanding)	10	$45 \le Marks \le 50$
2.	A+ (Excellent	9	$40 \le Marks \le 44$
3.	A (Very Good)	8	$35 \le Marks \le 39$
4.	B+ (Good)	7	$27.5 \le Marks \le 34$
5.	B (Above Average)	6	$25 \le Marks < 27.5$
6.	C (Average)	5	$22.5 \le Marks \le 24$
7.	D (Pass)	4	$20 \le Marks < 22.5$
8.	F (Fail)	0	Marks < 20
9.	Ab (Absent)	0	

<u>CGPA</u> :The CGPA is the weighted average of the grade points obtained in all courses (theory and Practicals) by a student in all the courses in 6 semesters.

Based on the performance of the student in the Semester Examinations, Nowrosjee Wadia College will declare the results and issue the Semester Grade sheets. Also, the College will declare the results and issue the Grade sheets at the end of the course. The class will be awarded to a student on the basis of CGPA. The award of the class shall be as per the following table

Sr. No.	CGPA	Class of the degree awarded
1	9.50 or more than 9.50	OUTSTANDING (O)
2	8.50 or more but less than 9.50	EXCELLENT (A+)

3	7.50 or more but less than 8.50	VERY GOOD (A)
4	6.25 or more but less than 7.50	GOOD (B+)
5	5.25 or more but less than 6.25	ABOVE AVERAGE (B)
6	4.75 or more but less than 5.25	AVERAGE (C)
7	4.00 or more but less than 4.75	PASS (D)

Semester 1 (First Year)

Cours	Course	Course / Paper Title	Hours	Credit	CIA	ESE	Total
е Туре			/ Week				
Major Mandator	Major Paper 1 (Theory)	Computational Thinking	2	2	15	35	50
y (4+2)	Major Paper 2 (Theory)	Fundamentals of Databases	2	2	15	35	50
	Major Paper 3 (Practical)	Laboratory Course on Computational Thinking and Fundamentals of Databases	4	2	15	35	50
Major Elective s							
Minor	NIL	NIL	NIL	NIL	NIL	NIL	NIL
OE (2		Open Elective 1	2	2	15	35	50
+2)		Open Elective 2	2	2	15	35	50
VSC (2)	Major Specific Practical 1	Laboratory Course on Basic Statistics for Computer Science	2	2	15	35	50
SEC (2)	Skill Paper 1 (Theory)	Basic Statistics for Computer Science	2	2	15	35	50
AEC(2),	English Theory	English Communication I	2	2	15	35	50
VEC (2)	EVS Theory	Environment Science I	2	2	15	35	50
IKS (2)	Major Specific Theory	Vedic Mathematics and Computer Fundamentals	2	2	15	35	50
CC (2)	CC-I Course	Physical Education / Cultural Activities, NSS/NCC and Fine/ Applied/ Visual/ Performing Arts Course	2	2	15	35	50

Semester 2 (First Year)

Course	Course	Course / Paper	Hours	Credit	CIA	ESE	Tota
Туре		Title	/Week				1
Major	Major Paper 4	Advanced 'C'	2	2	15	35	50
Mandatory	(Theory)	Programming					
(4+2)	Major Paper 5	Advanced Database	2	2	15	35	50
	(Theory)	Management Systems					
	Major Paper 6	Laboratory Course on	4	2	15	35	50
	(Practical)	Advanced 'C'					
		Programming and					
		Advanced Database					
		Management Systems					
Major							
Electives							
Minor	Minor Paper 1	Fundamentals of	2	2	15	35	50
	(Theory/Practical)	Electronics (T/P)					
OE (2 +2)		Open Elective 3	2	2	15	35	50
		Open Elective 4	2	2	15	35	50
VSC (2)	Major Specific	Advanced Statistics for	2	2	15	35	50
	Practical II	Computer Science					
SEC (2)	Skill Paper 2	Basic Mathematics for	2	2	15	35	50
	(Theory)	Computer Science					
AEC(2),	English Theory	English Communication	2	2	15	35	50
		II					
VEC (2)	EVS Theory	Environment Science II	2	2	15	35	50
IKS (2)							
CC (2)	CC-II Course	Physical Education /	2	2	15	35	50
		Cultural Activities,					
		NSS/NCC and Fine/					
		Applied/Visual/					
		Performing Arts Course					

Semester 3 (Second Year)

Course Type	Course	Course / Paper Title	Hours /Wee k	Credit	CI A	ES E	Tota l
Major Mandato	Major Paper 7 (Theory)	Data Structures and Algorithms-I	2	2	15	35	50
ry (6+2)	Major Paper 8 (Theory)	Software Engineering	2	2	15	35	50
	Major Paper 9 (Theory)	Computer Networks	2	2	15	35	50
	Major Paper 10 (Practical)	Laboratory Course on Data Structures and Algorithms and Software Engineering	4	2	15	35	50
Major Electives							
Minor (4)	Minor Paper 2 (Theory)	Digital Electronics and Circuit Design (T) / Mathematics (T)	2	2	15	35	50
	Minor Paper3 (Practical)	Laboratory Course on Sensors and IoT / Laboratory Course in Mathematics	4	2	15	35	50
OE (2)		Open Elective 5	2	2	15	35	50
VSC (2)	Major Specific Theory	Basics of Web Designing	2	2	15	35	50
SEC (2)							
AEC(2),	MIL	MIL-I (Hindi) / MIL-I (Marathi)	2	2	15	35	50
VEC (2)							
IKS (2)							
FP/CEP (2)	FP –I	Field Project Related to Computer Science	6	2	15	35	50
CC(2)	CC III	Physical Education / Cultural Activities, NSS/NCC and Fine/ Applied/ Visual/ Performing Arts Course	2	2	15	35	50

Course	Course	Course / Paper Title	Hours	Credit	CI	ES	Tota
Туре			/Wee		А	Ε	l
			k				
Major	Major Paper 11	Data Structures and			15	35	50
Mandatory	(Theory)	Algorithms-II	2	2			
(6+2)	Major Paper 12 (Theory)	Principles of Multimedia	2	2	15	35	50
	Major Paper 13 (Theory)	Network Security	2	2	15	35	50
	Major Paper 14 (Practical)	Data Structures and Algorithms-II And Computer Networks	4	2	15	35	50
Major Electives							
Minor (4)	Minor Paper 4 (Theory)	Digital Electronics and Circuit Design(T) / Mathematics (T)	2	2	15	35	50
	Minor Paper 5 (Practical)	Laboratory Course on Sensors and IoT / Laboratory Course in Mathematics	4	2	15	35	50
OE (2)		Open Elective 6	2	2	15	35	50
VSC (2)							
SEC (2)	Skill Paper 3 (Theory)	Python Programming	2	2	15	35	50
AEC(2),	MIL	MIL-I (Hindi) / MIL-I (Marathi)	2	2	15	35	50
VEC (2)							
IKS (2)							
CEP(2)	CEP –I		6	2	15	35	50
CC(2)	CC-IV	Physical Education / Cultural Activities, NSS/NCC and Fine/ Applied/ Visual/ Performing Arts Course	2	2	15	35	50

Semester 4 (Second Year)

Semester 5 (Third Year)

Cour	Course	Course / Paper	Hours	Credit	CI	ES	Tota
se		Title	/Wee		Α	Ε	1
Туре			k				
Major	Major Paper 15	Operating Systems -I	2	2	15	35	50
Mandato	(Theory)						
ry	Major Paper 16	Foundations of Data	2	2	15	35	50
(6+2+2)	(Theory)	Science					
	Major Paper 17	Object Oriented	2	2	15	35	50
	(Theory)	Programming using Java					
	Major Paper 18	Laboratory Course on Java	4	2	15	35	50
	(Practical)	and Foundations of Data					
		Science					
	Major Paper 19	Laboratory Course on OS-I	4	2	15	35	50
	(Practical)						
Major	Elective 1(Theory)	Theory of Computation	2	2	15	35	50
Electiv	Elective 1(Practical)	Computer Graphics using	4	2	15	35	50
es		Python	•	_	10	00	00
	OR						
	Elective 2(Theory)	Web Technologies	2	2	15	35	50
	Elective 2 (Practical)	Lab course on Web	4	2	15	35	50
		Technologies					
Minor	Minor Paper 6	E/M/S	2	2	15	35	50
(4)	(Theory)						
	Minor Paper 7	E/M/S	4	2	15	35	50
	(Practical)						
OE (2)							
VSC (2)	Major Specific	Laboratory Course on	4	2	15	35	50
	Practical III	Block Chain Technology					
SEC (2)							
$\overline{AEC(2)},$							
VEC (2)							
IKS (2)							
FP/	FP –II/CEP II		6	2	15	35	50
CEP(2)							

Semester 6 (Third Year)

Cour	Course	Course / Paper Title	Hours	Credit	CIA	ES	Tota
se			/ Week			E	1
Туре							
Major	Major Paper 20	Operating Systems-II	2	2	15	35	50
Mandato	(Theory)						
ry (6+2+2)	Major Paper 21 (Theory)	Data Analytics	2	2	15	35	50
	Major Paper 22 (Theory)	Advanced Java Programming	2	2	15	35	50
	Major Paper 23 (Practical)	Operating Systems-II	4	2	15	35	50
	Major Paper 24 (Practical)	Laboratory Course on Advanced Java Programming	4	2	15	35	50
Major Electiv	Elective 3 (Theory)	Compiler Construction	2		15	35	50
es	Elective 3 (Practical)	Laboratory Course on Git and Github	4		15	35	50
		OR		4			
	Elective 4 (Theory)	Fundamentals Of Artificial Intelligence	2		15	35	50
	Elective 4 (Practical)	Laboratory Course on Software Testing Tools	4		15	35	50
Minor (2)	Minor Paper 8 (Theory)	E/M/S	2	2	15	35	50
VSC (2)	Major Specific Practical IV	Laboratory Course on Linux Administration	4	2	15	35	50
SEC (2)							
AEC(2),							
VEC (2)							
IKS (2)							
OJT	FP –II/CEP II		12	4	15	35	50

Semester 7 (Fourth Year)

Cour	Course	Course / Paper Title	Hours	Credit
se Type			/ week	
Major Mandato	Major Paper 25 (Theory)	Design and Analysis of Algorithms	4	4
ry (4 + 4	Major Paper 26 (Theory)	Advanced Operating Systems	4	4
+2+2)	Major Paper 27 (Practical)	Principles of Programming Languages	4	2
	Major Paper 28 (Practical)	Laboratory Course on Advanced Operating Systems and Principles of Programming Languages	4	2
Major Electiv	Elective 5 (Theory)	Digital Forensics and Cloud Security	2	
es	Elective 5 Practical)	Laboratory Course on Digital Forensics and Cloud Security	4	
	OR			4
	Elective 6 (Theory)	Mean-stack web development	2	
	Elective 6 (Practical)	Laboratory Course on Mean-stack web development lab	4	
Minor (4)	Minor Paper (Theory)	Research Methodology	4	4
OE (2)				
VSC (2)				
SEC (2)	Major Specific Practical V	CS	2	2
AEC(2),				
VEC (2)				
IKS (2)				
FP / CEP(2)				
OJT(4)				

Semester 8 (Fourth Year)

Cour	Course	Course / Paper Title	Hours	Credit
se Type			/ WEEK	
Major Mandato	Major Paper 29 (Theory)	Web frameworks	4	4
ry (4+4	Major Paper 30 (Theory)	Machine Learning and Artificial Intelligence	4	4
+2+2)	Major Paper 31 (Practical)	Laboratory Course on Web frameworks	4	2
	Major Paper 32 (Practical)	Laboratory Course on Machine Learning and Artificial Intelligence	4	2
Major Electiv	Elective 7 (Theory)	Software Project Management	2	
es	Elective 7 (Practical)	Laboratory Course on Project Management tools	4	
	OR			4
	Elective 8 (Theory)	NLP and Large Language Models	2	
	Elective 8 (Practical)	Laboratory Course on NLP and Large Language Models lab	4	
OE (2)				
VSC (2)				
SEC (2)	Major Specific Practical VI	CS(P)	4	2
AEC(2),				
VEC (2)				
IKS (2)				
FP / CEP(2)				
OJT(4)			12	4

MODERN EDUCATION SOCIETY'S NOWROSJEE WADIA COLLEGE, PUNE

(An Autonomous College Affiliated to Savitribai Phule Pune University)

NEP Syllabus for

Second Year B.Sc. (COMPUTER SCIENCE)

(Based on NEP 2020 framework)

(To be implemented from the Academic Year 2024-25)

	Course Code:	т				
Title : Data Structures and Algorithms – I						
Semester III Major paper 7 Theory						
Teaching Scheme	No. of Credits	Examination S	cheme			
30 Hours	2	CE : 15 m	larks			
Decessor initial		ESE: 35 n	narks			
Prerequisites:						
Basic knowledge of algor	rithms and problem solving					
• Knowledge of C Program	nming Language					
1 To loom the sustantic man	of column muchless					
1. To learn the systematic way	of solving problem	6.1.4				
2. To understand the different n	nethods of organizing large amo	ount of data				
3. To efficiently implement the	different data structures					
4. To efficiently implement solu	utions for specific problems					
5. To apply linear data structure	2S.					
	Course Contents					
Unit 1Introduction to Data Structures and Algorithm Analysis8						
1.1 Introduction						
1.1.1 Need of Data Structure						
1.1.2 Definitions - Data	and information, Data type, Da	ta object, ADT, Da	ta Structure			
1.1.3 Types of Data Stru	ictures					
1.2 Algorithm analysis						
1.3 Space and time complexity. Graphical understanding of the relation between						
different functions of n. examples of linear loop logarithmic, quadratic loop						
etc.	1 17 0					
1.4 Best, Worst, Average case a	analysis, Asymptotic notations (Big O, Omega Ω ,				
Theta \Box). Problems on time complexity calculation.						
Unit 2 Array as a Data	a Structure		10			
2.1 ADT of array, Operations						
2.2 Array applications – Searching, Sequential search, Binary Search						
2.3 Sorting Terminology- Internal, External, Stable, In-place Sorting						
2.3.1 Comparison Based Sorting - Lower bound on comparison based sorting,						
Methods- Bubble Sort, Insertion Sort, Selection Sort, Algorithm design strategies -						
Divide and Conquer strategy, Merge Sort, Ouick Sort, Non Comparison Based						
Sorting: Counting Sort.	Radix Sort.	· 1				

Unit 3 Linked List	6					
3.1 List as a Data Structure, differences with array.						
3.2 Types of Linked List – Singly, Doubly, Circular						
3.3 Operations on Linked List - create, traverse, insert, delete.						
3.4 Applications of Linked List – polynomial representation, Addition of two polynomial	lynomials					
Unit 4 Stack	6					
4.1 Introduction						
4.2 Operations – init(), push(), pop(), isEmpty(), isFull(), peek(), time complexity	y of					
operations.						
4.3 Implementation- Static and Dynamic with comparison						
4.4 Applications of stack						
4.4.1 Function call and recursion, String reversal, palindrome checking						
4.4.2 Expression types - infix, prefix and postfix, expression conversion a	and					
evaluation (implementation of infix to postfix, evaluation of postfix)						
4.4.3Backtracking strategy - 4 queens problem (implementation using sta	nck)					
Learning Outcomes						
On completion of the course, student will be able to						
1. To use well-organized data structures in solving various problems.						
2. To differentiate the usage of various structures in problem solution.						
3. Implementing algorithms to solve problems using appropriate data structur	res.					
Learning Resources						
1. Classic Data Structures, D. Samanta, Prentice Hall India Pvt. Ltd, 2 nd Edition.						
2. Fundamentals of Data Structures in C, Ellis Horowitz, Sartaj Sahni, Susan Anderson-						
Freed, Universities Press, 2nd Edition.						
3. Data Structures using C and C++, YedidyahLangsam, Moshe J. Augenstein,						
Aaron M. Tenenbaum, 2 nd Edition, Pearson Education.						
4. Data Structures: A Pseudo code approach with C, Richard Gilberg ,Behrou	ız A.					
Forouzan, Cengage Learning, 2 nd Edition.						

	<u> </u>					
	Course Code:					
Title : Software Engineering						
	nester III (Major Paper	8) Theory	C.L.			
Teaching Scheme	Teaching Scheme No. of Credits Examination Scheme					
30 Hours	2	CE: 15 m	arks			
D		ESE:35ma	arks			
Prerequisites						
• Problem solving using c	computer.					
Learning Objectives						
1. To get knowledge and u	inderstanding of software	engineering discipline.				
2. Know the role played by	y requirements analysis in	requirement integration	1. C 1 1 ·			
3. Appreciate the idea beh	ind Design Patterns in han	dling common problem	is faced during			
Building an application	asian nuinainlas for softwa	na maiast davislamman	4			
4. To learn analysis and d	esign principles for softwa	are project development	[
Course Contents						
Unit1 Introduction to Software Engineering and Process 4 Models 4						
1.1 Definition of Software						
1.2 Nature of Software Engi	neering					
1.3 Changing nature of softw	vare					
1.4 Software Process						
1.4.1 The Process Framewo	ork					
1.4.2 Umbrella Activities						
1.4.3 Process Adaptation						
1.5 Generic Process Model						
1.6 Prescriptive Process Models						
1.6.1 The Waterfall Model						
1.6.2 Incremental Process Models						
1.6.3 Evolutionary Process	1.6.3 Evolutionary Process Models					
	1 4		4			
Unit2 Agile De	evelopment		4			

2.1 What is Agility	?				
2.2 Agile Process					
2.2.1 Agility Principles					
2.2.2 The Pollucs	of Agrie Development				
2.2.5 Human Fact	ors				
2.5 Scrum					
2.4 Other Agrie Fra	undworks				
2.4.1 Extreme 110 2.4.2 Kanban	gramming(AI)- AI values, AI 110cess, muusulai AI				
2.4.2 Kanoan 2.4.3 DevOns					
2.4.5 Devops					
Unit3	Requirements Analysis	3			
3.1 Requirement El	icitation,				
3.2 Software requi	rement specification (SRS)				
3.2.1 Developing	Use Cases (UML)				
3.3 Building the A	nalysis Model				
3.3.1 Elements of	the Analysis Model				
3.3.2 Analysis Pat	terns				
3.3.3 Agile Requi	rements Engineering				
3.4 Negotiating Re	quirements				
3.5 Validating Req	uirements				
Unit4	Requirements Modeling	13			
4.1 Introduction to	UML				
4.2 Structural Mode	eling				
4.2.1 Use case mo	del				
4.2.2 Class model					
4.3 Behavioral Mod	leling				
4.3.1 Sequence model					
4.3.2 Activity mod	lel				
4.3.3 Communicat	tion or Collaboration model				
4.4 Architectural M	lodeling				
4.4.1 Component	model				
4.4.2 Artifact model					
4.4.3 Deployment model					
4.5 Data Modeling Concepts- Data Objects, Data Attributes and Relationship					
4.6 Design Process					
4.6.1 Software	e Quality Guidelines and Attributes				
4.6.2 Evolution of Software Design					
4. / Design Concepts					
Abstraction, Archit	ecture, Patterns, Separation of Concerns, Modularity,				
Information Hiding	, Functional Independence, Refinement, Aspects,				
Refactoring, Object Oriented Design Concepts, Design Classes					

Unit 5	Design for Mobility	6
5 1 The Challenges		0
5.1.1 Developmen	t Considerations	
5.1.2 Technical Co	onsiderations	
5.2 Mobile Develor	pment Life Cycle	
5.2.1 User Interfac	ze Design	
5.3 Mobile Archite	ctures	
5.4 Context Aware	Apps	
5.5 Web Design Py	ramid	
5.6 WebApp Interf	ace Design	
5.6.1 Aesthetic De	sign	
5.6.2 Content Desi	ign	
5.6.3 Architecture	Design	
5.6.4 Navigation E	Design	
Learning Outcom	es	
On completion of t	his course, students will be able to:	
1. Compare and cl	hose a process model for a software project development.	
2. Identify require	ments analyze and prepare models.	
3. Prepare the SRS	S, Design document, Project plan of a given software syste	m
Learning Resourc	es	
1. Software Enginee	ering: A Practioner's Approach, Roger S. Pressman, 9th Ec	lition, Tata
McGraw-Hill		
2. Software Engine	ering Concepts, Richard Fairley, Tata McGraw-Hill.	
3.Information Tech	nology Project Management, Kathy Schwalbe, 6th Edition	,Thomson
Publication		
4.Software Enginee	ering, Ian Sommerville, v, 10th Edition Pearson publication	L

Subject Code: Subject Title: Computer Networks								
	Semester III (Major Paper 9) Theory							
Teaching SchemeNo. of CreditsExamination Scheme								
30 Hours 2 CE : 15 m			marks					
		ESE:35n	narks					
Learning Objectives								
 To understand basic to To prepare students standards, various top 	erms of computer networks and the with basic networking concepts: ologies and applications of networ	data communicati k.	nent. on, protocols and					
	Course Contents							
Unit 1 Introduction to 1	Networks and Network Models		6					
 1.3 Network Software- Connection-Oriented 1.4 Reference models - Connectiondevices in Models. 1.5 History and evolution 	 Internet, Accessing the Internet 1.3 Network Software- Protocol hierarchies, Design Issues of the layer, Connection-Oriented and Connectionless Services 1.4 Reference models - OSI Reference Models, TCP/IP Reference model, Connectiondevices in different layers, Comparison of OSI and TCP/IP Reference Models. 1.5 History and evolution of internet 							
Unit 2 Physical and Da	ta Link Layer		8					
 2.1 Communication at the physical layer, data rate limits - Noiseless channel (Nyquist bitrate), noisy channel (Shannon capacity), Performance - bandwidth, throughput,Latency, bandwidth-delay product, jitter. 2.2 Design issues of Data Link Layer, Services - Framing, flow control, error control, congestion control, Link layer addressing Framing Methods – Character Count, Flag bytes with Byte Stuffing, Flags bits with Bit Stuffing, Physical Layer Coding Violations 								
2.3 The Channel allocation problem, Static and dynamic allocation, Media Access Methods Taxonomy of multiple access protocols								
2.4 Switching and TC	P/IP layers, Types - circuit switchi	ng, packet switchi	ng					
andmessage switching								
2.5 Wired LANs - Standard Ethernet characteristics, Addressing, Access								
method, implementat	ion, Fast and Gigabit Ethernet	-						
2.6 Wireless LANs - A	Architectural comparison, Character	ristics, Access con	trol,					
IEEE 802.11 archite	cture, Bluetooth architecture							

Unit 3	Network Layer	8			
3.1 Netw 3.2 Oper 3.3 IPv4 Classles 3.5 Forv 3.6 Netw 3.7 Mob 3.8Next protoc 3.9Rout vector re	 3.1 Network layer services - Packetizing, Routing and forwarding, other services 3.2 Open and closed loop congestion control. 3.3 IPv4 addressing- Address space, classful addressing, Subnetting, Supernetting, Classless addressing, Network address resolution (NAT). 3.5 Forwarding of IP packets- based on destination address, based on label. 3.6 Network Layer Protocols- Internet Protocol (IP), IPv4 datagram format, Fragmentation,options 3.7 Mobile IP-addressing, agents, Three phases 3.8Next Generation IP- IPv6 address representation, address space, address types, IPv6 protocol, packet format, extension header, Difference between IPv4 and IPv6 3.9Routing - General idea, Algorithms - Distance vector routing, link state routing, path vector routing 				
Unit 4	Transport Layer	8			
4.1 Tra and cont cont 4.2 Con 4.3 Tran 4.4 Tran Segr term	 4.1 Transport layer Services- Process-to-process communication, Addressing, Encapsulation and decapsulation, Multiplexing and demultiplexing, Flowcontrol, Pushing or pulling, Flow control, Buffers, Sequence numbers, Acknowledgements, sliding window, congestion control. 4.2 Connectionless and Connection-oriented service, Port numbers 4.3 Transport layer protocols- User datagram protocol, user datagram, UDPServices 4.4 Transmission Control Protocol - TCP Services, TCP Features, TCP Segment format, three-way handshake for connection establishment and termination, State transition diagram, windows in TCP. 				
 Learning Outcomes On completion of this course, students will be able to : Have a good understanding of the OSI and TCP/IP Reference Models. Understand the working of various layers and protocols in the layers. Analyze the requirements for a given organizational structure and select the most appropriate networking architecture and technologies. Learning Resources Computer Networks, Andrew S. Tanenbaum, 5th Edition, Pearson Education Data Communication and Networking, Behrouz Fourouzan, 5th Edition, McGraw HillPvt. Ltd. 					

Course Code: Title : Practical course on Data Structures and Algorithms I & Software Engineering Semester III Major paper 10						
Teaching Scheme	No. of Credits	Examination Scheme				
4 Hours/per week/per batch	2	CE : 15 marks				
Batch Size : 12		ESE: 35 marks				

Operating Environment:

For Data Structures:

- **Operating system:** Linux
- Editor: Any linux based editor like vi, gedit etc.
- **Compiler** : cc or gcc

Lab Book:

The lab book is to be used as a hands-on resource, reference and record of assignment submission and completion by the student. The lab book contains the set of assignments which the student must complete as a part of this course.

Programming Assignments:

Programs should be done individually by the student intheir respective login. The codes should be uploaded on either the local server, Moodle, Github or any open source LMS. Print-outs of the programs and output may be taken but not mandatory for assessment.

Assessment:

Continuous assessment of laboratory work is to be done based on overall performance and lab assignments performance of student. Each lab assignment assessment will be assigned grade/marks based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as each lab assignment assessment include-timely completion, performance, innovation, efficient codes and good programming practices.

• Internal Evaluation :

- 10 marks will be given based on a mini project of Software Engineering.
- \circ 5 marks will be allocated for Assignment completion and practical attendance.

• University Evaluation :

• The Practical slip will be of 35 Marks which will be based on Data structures.

Suggested Assignments for Data Structures – I
Assignment1: Searching Algorithms
Implementation of searching algorithms to search an element using: Linear Search, Binary
Search (with time complexity)
Assignment 2:Sorting Algorithms - I
Implementation of sorting algorithms: Bubble Sort, Insertion Sort
Assignment 3:Sorting Algorithms - II
Implementation of sorting algorithms: Quick Sort, Merge Sort
Assignment 4:Singly Linked List
1.Dynamic implementation of Singly Linked List to perform following operations:
Create, Insert, Delete, Display, Search
Assignment 5:Doubly Linked List
1.Dynamic implementation of Doubly circular Linked List to perform following operations:
Create, Insert, Delete, Display, Search
Assignment 6:Linked List Applications
1. Addition of two polynomials in a single variable.
Assignment 7:Stack
1. Static and Dynamic implementation of Stack to perform following operations: Init,
Push, Pop, Peek, Isempty, Isfull
Assignment 8: Applications of Stack
1. Implementation of an algorithm that reverses string of characters using stack and
checks whether a string is a palindrome.
2. Infix to Postfix conversion.
Evaluation of postfix expression.
Suggested Assignments for Software Engineering mini Project3

- 1. Prepare detailed statement of problem for the selected mini project
- 2. Identify suitable process model for the same.
- 3. Develop Software Requirement Specification for the project.
- 4. Identify scenarios and develop UML Use case
- 5. Other artifacts: Class Diagram, activity diagram, sequence diagram, component diagram and any other diagrams as applicable to the project.

Sample project titles: (These are just samples, students are suggested to take up different case studies)

- 1. Online mobile recharge system
- 2. Credit calculation system
- 3. Image sharing and editing system
- 4. Internal examination system
- 5. e-learning management system

	Subject Code:				
Subject	Subject Title: Digital Electronics and Circuit Design				
Semester III/IV	Semester III/IV Minor Paper 3 and Paper 5 Electronics Theory				
Teaching Scheme	No. of Credits	E	xamination Scheme		
30 Hours	2 CE: 15 marks				
		E	SE: 35 marks		
Learning Objectives					
1. Understand dig	gital circuit designing concep	ot			
2. Study basics o	f Computer organization and	Architecture			
3. Know the prin	ciples of digital communication	ion			
4. Features of 80	86 and 8051				
	Course Contents				
Unit 1	Digital circuit design		10		
1.1 Introduction to	Boolean algebra and rules o	f Boolean alg	gebra		
1.2 Simplification	of expressions using rules of	Boolean alg	ebra, Concept of SOP and		
POS, Maxtern	and Minterm				
1.3 Introduction to	K maps: Concept of Cells, I	Pairs, Quads,	Octets		
1.4 Combinational	circuit				
1.4.1 Half ac	lder and Full adder				
1.4.2 Designi	ng 4 bit Binary to Gray and 0	Gray to Bina	ry convertor		
1.5 Sequential circ	cuit Design				
1.5.1 I	Definition and Truth tables of an Flipflop	f JK flipflop,	D flipflop		
1 5 2 Excitati	on table for IK flipflon and	T flinflon			
1 5 3 Des	igning of 3 bit synchronous I	In counter			
1.5.4 Des	igning of 3 bit Synchronous	Down counte	er		
Unit 2	Introduction to Computer		6		
	Organization		Ū		
2.1 Block diagram	n and function of each block	of Computer	system		
2.2 Block diagram	n of a CPU and function of it	s blocks	5		
2.3 Concept of Buses and registers					
2.4 Stack: Need and its organization					
2.5 I/O interfacing concepts					
2.5.1Block diagram and need of I/O interface					
2.5.2 Programmed I/O part, DMA (Definition, Types of DMA transfer and DMA controller)					

Unit 3	Introduction to Microprocessors and Microcontrollers	7		
 3.1 Definition of Microprocessors and Microcontrollers 3.2 Differences between Microprocessors and Microcontrollers 3.3 Microprocessor architectures: Von Neumann and Harvard architecture (in brief) 3.4 Block diagram of 8086 microprocessor and function of each block 3.5 Concept of Superscalar architecture and pipelines 3.6 Block diagram of 8051 Microcontroller and function of each block 				
Unit 4	Digital Communication	7		
 4.1 Block diagram of 4.2 Concept of Char 4.3 Sampling theore 4.4 Modulation and 4.4.1 Concept of r 4.4.2 Digital mod 4.5 Concept of FDN Learning Outcome On the completion of	f Communication system and function of e anel capacity, bandwidth, bit rate, baud rate m: Nyquist and Shannon's theorem (Statem Demodulation modulation and demodulation ulation techniques: PCM, Concept of ASK, I, TDM and WDM s of the course student will be able to:	ach block and signal to noise ratio nent and formula) FSK and PSK techniques		
 Understand the b Design digital cin Differentiate bety Understand the restand the rest	 Understand the basics of digital circuit design. Design digital circuits. Differentiate between microprocessor and microcontroller. Understand the requirements of digital communication. 			
Learning Resource	s			
 8051 microc McKinley,2ⁿ Modern Digital Digital funda Microproces Communicat Digital communicat 	ontroller and embedded system using assen d Edition, Pearson publications ital Electronics by R.P Jain 5 th edition McG amentals by Floyd 11 th edition Pearson pub sor and interfacing, Douglas Hall 3 rd edition ion Electronics Frenzel 3 rd edition, McGrav nunications Kumar M Satish PHI learning I	nbly and C: Mazidi and raw Hill publications blications on Mc Graw Hill publication w Hill Pvt Ltd.		

	Subject Code:			
Subject Title: Laborator	Subject Title: Laboratory Course on Digital Electronics and Circuit Design			
Semester	III/IV Minor Paper 4 and Pape	er 6		
Teaching Scheme	No. of Credits	Examination Scheme		
4 Hours/per week/per batch	2	CE: 15 marks		
		ESE: 35 marks		
Learning Objectives				
1. Illustrate various commun	ication circuits using CRO.			
2. To design, build and test c	ircuits used in digital communicat	ion.		
3. Understand the difference	between sequential and combinati	onal circuits.		
	Course Contents			
Any eight from the following				
1. Study of 3 bit Pulse Code	Modulation technique			
2. Study of Frequency Shift I	Keying			
3. Study of Time Division M	ultiplexing			
4. Study of Frequency Divisi	on Multiplexing			
5. Study of Error detection an	nd correction using Hamming Cod	le technique		
6. PN Sequence Generator	6 6			
7. Study of PAM				
8. Design of Half and Full add	der circuit using K map			
9. Design of 4 bit binary to gr	ay and Gray to binary convertor u	sing K map		
10. Design of 3 bit Synchronou	us Up/Down/Updown counter usin	lg K map		
11. Study of Flipflops				
12. Study of Shift register(SIS)	O and Ring counter)			
13. Study of diode matrix ROM	1			
14. Study of 4 to 1 Multiplexer	and 1 to 4 Demultiplexer			
15. Study of read write action of	of RAM 7489			
Learning Outcomes				
On the completion of the course s	tudent will be able to:			
1. Design and build common com	binational and sequential digital c	circuits.		
2. Understand digital communication concepts by using circuits				
3. Learn to use measuring instrum	ents like CRO, Signal generator a	nd Multimeter		

Subject Title: Applied Mathematics Semester III/IV Minor Paper 3 and Paper 5 (Theory) Teaching Scheme 30 Hours Credits Examination Scheme CE: 15 marks ESE: 35 marks 1. Introduction of fundamental concepts and theory of computer graphics. 2 20 transformation curves and introduction to 3D transformation. 3. Find optimal solution to problems. 2 4. Various method that are used for quantitative decision making Course Contents 8 Unit 1 Two dimensional transformations 8 1.1 Introduction. 1.2 Representation of points. 8 1.3 Transformation of points. 8 1.4 Transformation of points. 1.4 Transformation of straight lines 8 1.6 Midpoint Transformation 1.7 Transformation of parallel lines 1.8 Transformation of parallel lines 1.8 Transformation of aurit square. 1.10 Combined transformations. 1.11 Transformation of a unit square. 1.12 Solid body transformations. 1.11 Transformation of a unit square. 1.12 Start of body transformations. 6 1.11 Retorection through an arbitrary point. 1.15 Reflection through an arbitrary point. 1.15 Reflection through an Arbitrary plane 2 No 6 2.1 Introduction. 2.3 Multiple tr			Subject Code:	
Semester III/IV Minor Paper 3 and Paper 5 (Theory) Teaching Scheme 30 Hours No. of Credits Examination Scheme CE: 15 marks ESE: 35 marks 1 Introduction of fundamental concepts and theory of computer graphics. 2 2 2D transformation curves and introduction to 3D transformation. 3 3. Find optimal solution to problems. 4 4. Various method that are used for quantitative decision making 2 Course Contents Unit 1 Two dimensional transformations 8 1.1 Introduction. 8 1 1.2 Representation of points. 8 1 1.3 Transformation of points. 8 1 1.4 Transformation of points. 8 1 1.5 Transformation of parallel lines 8 1 1.6 Midpoint Transformations. 1.10 Combined transformations. 1.11 Transformation of a unit square. 1.10 Combined transformations. 1.11 Transformation of a unit square. 1.12 Solid body transformations. 1.1 Bittoria and homogeneous coordinates. 1.13 Transformation of a unit square. 1.13 Stransformations. 1.11 Transformation and homogeneous coordinates. 1	Subject Title: Applied Mathematics			
Teaching Scheme 30 HoursNo. of CreditsExamination Scheme C.E: 15 marks ESE: 35 marks30 Hours2C.E: 15 marks ESE: 35 marksLearning Objectives1. Introduction of fundamental concepts and theory of computer graphics.2. 2D transformation curves and introduction to 3D transformation.3. Find optimal solution to problems.Course ContentsUnit 1Two dimensional transformations81.1 Introduction.1.2 Representation of points.1.3 Transformation of points.1.5 Transformation of points.1.5 Transformation of points.1.6 Midpoint Transformation1.7 Transformation of parallel lines1.8 Transformation of parallel lines1.9 Transformation of a unit square.1.12 Solid body transformations.1.11 Transformation of a unit square.1.1.5 Transformation of a unit square.1.1.5 Transformation of a unit square.1.1.6 Kotation about an arbitrary point.1.1.6 Kotation about an arbitrary point.1.1.1 Strensformations.62.1 Introduction.2.3 Multiple transformations.1.1 Introduction.2.3 Multiple transformations.2.4 Rotation about a arbitrary planeCourse Contents <tr <td="">2.1 Social bo</tr>		Se	mester III/IV Minor Paper 3 and Paper 5 (The second s	neory)
30 Hours 2 CE: 15 marks ESE: 35 marks Learning Objectives 1 Introduction of fundamental concepts and theory of computer graphics. 2 2D transformation curves and introduction to 3D transformation. 3. Find optimal solution to problems. . 4. Various method that are used for quantitative decision making . Course Contents Unit 1 Two dimensional transformations 8 1.1 Introduction. 1.2 Representation of points. . 1.3 Transformation of straight lines . 1.6 Midpoint Transformation . 1.7 Transformation of straight lines . 1.8 Transformation of points. . 1.9 Transformations, reflections, scaling, shearing. . 1.10 Combined transformations. . . 1.13 Transformation of a unit square. . . 1.13 Transformation of a unit square. . . 1.13 Translations and homogeneous coordinates. . . 1.14 Rotation about an arbitrary point. . . 1.15 Transformations. 6 . 2.1 Introduction. . . . 2.2 Three dimensional – Scaling, shearin	Teaching S	cheme	No. of Credits	Examination Scheme
ESE: 35 marks Learning Objectives I. Introduction of fundamental concepts and theory of computer graphics. 2. 2D transformation curves and introduction to 3D transformation. 3. Find optimal solution to problems. 4. Various method that are used for quantitative decision making Course Contents With 1 Two dimensional transformations 8 1.1 Introduction. 1.2 Representation of points. 1.3 Transformation of points. 1.3 Transformation of points. 1.5 Transformation of straight lines 1.6 Midpoint Transformation 1.7 Transformation of a unit square. 1.10 Combined transformations. 1.11 Transformations of a unit square. 1.12 Solid body transformations. 1.13 Translations and homogeneous coordinates. 1.14 Retation about an arbitrary point. 1.15 Reflection through an arbitrary line. Unit 2 Three dimensional Transformations 1.11 Transformations. 1.13	30 Hou	ırs	2	CE: 15 marks
Learning Objectives 1. Introduction of fundamental concepts and theory of computer graphics. 2. 2D transformation curves and introduction to 3D transformation. 3. Find optimal solution to problems. 4. Various method that are used for quantitative decision making Course Contents Unit 1 Two dimensional transformations 8 1.1 Introduction. 1.2 Representation of points. 1.3 Transformation of points. 1.4 Transformation of points. 1.5 Transformation of parallel lines 1.6 Midpoint Transformation 1.7 Transformation of parallel lines 1.8 Transformation of a parallel lines 1.9 Transformation of a unit square. 1.10 Combined transformations. 1.11 Transformation of a unit square. 1.12 Solid body transformations. 1.13 Translations and homogeneous coordinates. 1.14 Rotation about an arbitrary point. 1.15 Reflection through an arbitrary line. Unit 2 Three dimensional Transformations. 2.1 Introduction. 2.2 Three dimensional – Scaling, shearing, rotation, reflection, translation. 2.3 Multiple transformations. 2.4 Rotation about – an axi				ESE: 35 marks
1. Introduction of fundamental concepts and theory of computer graphics. 2. 2D transformation curves and introduction to 3D transformation. 3. Find optimal solution to problems. 4. Various method that are used for quantitative decision making Course Contents Course Contents Unit 1 Two dimensional transformations Representation of points. 1.2 Representation of points. 1.3 Transformation of points. 1.4 Transformation of points. 1.5 Transformation of parallel lines 1.6 Midpoint Transformation 1.7 Transformation of parallel lines 1.8 Transformation of parallel lines 1.9 Transformation of intersecting lines 1.9 Transformation of a unit square. 1.12 Solid body transformations. 1.13 Translations and homogeneous coordinates. 1.14 Rotation about an arbitrary point. 1.15 Reflection through an arbitrary point. 1.15 Reflection dimensional Transformations. 2.1 Introduction. 2.2 Three dimensional Transformations 6 2.1.1 Introduction. 2.2 Three dimensional Transformations. 2.4 Rotation about – an axis parallel to coordinate axes, an arbitrar	Learning Ob	jectives		
2. 2D transformation curves and introduction to 3D transformation. 3. Find optimal solution to problems. 4. Various method that are used for quantitative decision making Course Contents Unit 1 Two dimensional transformations 1 Two dimensional transformations 3. Transformation of points. 1.1 Introduction. 1.2 Representation of points. 1.3 Transformation of points. 1.4 Transformation of points. 1.5 Transformation of straight lines 1.6 Midpoint Transformation 1.7 Transformation of parallel lines 1.8 Transformation of intersecting lines 1.9 Transformation of a unit square. 1.10 Combined transformations. 1.13 Translations and homogeneous coordinates. 1.14 Rotation about an arbitrary point. 1.15 Reflection through an arbitrary line. Unit 2 Three dimensional Transformations. 2.3 Multiple transformations. 2.4 Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space 2.5 Reflection through an Arbitrary plane Unit 3 Linear Programming Problem I 8 3.1 Development of Operations Research. 3.2 Definition of Operations Resear	1. Introd	uction of	fundamental concepts and theory of computer gr	aphics.
3. Find optimal solution to problems. 4. Various method that are used for quantitative decision making Course Contents Unit 1 Two dimensional transformations 8 1.1 Introduction. 1.2 Representation of points. 1.3 Transformation of points. 1.5 Transformation of straight lines 1.6 Midpoint Transformation 1.7 Transformation of parallel lines 1.8 Transformation of parallel lines 1.9 Transformation of parallel lines 1.9 Transformation of anallel lines 1.9 Transformation of an unit square. 1.12 Solid body transformations. 1.13 Translations and homogeneous coordinates. 1.14 Rotation about an arbitrary point. 1.15 Reflection through an arbitrary line. Unit 2 Three dimensional Transformations 2.1 Introduction. 2.2 Three dimensional – Scaling, shearing, rotation, reflection, translation. 2.3 Multiple transformations. 2.4 Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space 2.5 Reflection through an Arbitrary plane Multiple transformations. 2.1 Development of Operations Research. 3.1 Development of Operations Researc	2. 2D tra	insformati	on curves and introduction to 3D transformation	
4. Various method that are used for quantitative decision making Course Contents Unit 1 Two dimensional transformations 8 1.1 Introduction. 1.2 Representation of points. 8 1.3 Transformation of points. 1.3 1.3 Transformation of points. 1.5 Transformation of straight lines 1.6 Midpoint Transformation 1.7 1.7 Transformation of parallel lines 1.8 1.8 Transformation of intersecting lines 1.9 Transformation of intersecting lines 1.1 1.1 1.1 1.1 1.10 Combined transformations. 1.11 1.1 1.1 1.1 1.1 1.1 1.10 Combined transformations. 1.1	3. Find c	ptimal so	lution to problems.	
Course Contents Unit 1 Two dimensional transformations 8 1.1 Introduction. 8 1.2 Representation of points. 8 1.3 Transformations and matrices. 8 1.4 Transformation of points. 8 1.5 Transformation of straight lines 8 1.6 Midpoint Transformation 7 1.7 Transformation of parallel lines 8 1.8 Transformation of parallel lines 1.8 1.9 Transformations. 1.11 1.10 Combined transformations. 1.11 1.11 Transformation of a unit square. 1.12 1.10 Combined transformations. 1.11 1.11 Transformation of a unit square. 1.12 1.12 Solid body transformations. 6 1.13 Translations and homogeneous coordinates. 6 1.14 Rotation about an arbitrary point. 1.15 1.15 Reflection through an arbitrary line. 6 2.1 Introduction.	4. Vario	us method	that are used for quantitative decision making	
Unit 1Two dimensional transformations81.1Introduction1.2Representation of points1.3Transformation of points1.4Transformation of straight lines.1.6Midpoint Transformation.1.7Transformation of parallel lines.1.8Transformation of parallel lines.1.9Transformation of intersecting lines.1.9Transformation: rotations, reflections, scaling, shearing1.10Combined transformations1.11Transformation of a unit square1.12Solid body transformations1.13Transformation and homogeneous coordinates1.14Rotation about an arbitrary point1.15Reflection through an arbitrary line.6Unit 2Three dimensional Transformations02.1Introduction2.2Three dimensional – Scaling, shearing, rotation, reflection, translation2.3Multiple transformations2.4Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space2.5Reflection through an Arbitrary plane83.1Development of Operations Research.3.23.2Definition of Operations Research.3.2			Course Contents	
Unit 1I two dimensional transformations51.1Introduction.1.2Representation of points.1.3Transformations and matrices.1.4Transformation of points.1.5Transformation of straight lines1.6Midpoint Transformation1.7Transformation of straight lines1.8Transformation of parallel lines1.8Transformation of intersecting lines1.9Transformation: rotations, reflections, scaling, shearing.1.10Combined transformations.1.11Transformation of a unit square.1.12Solid body transformations.1.13Translations and homogeneous coordinates.1.14Rotation about an arbitrary point.1.15Reflection through an arbitrary line.Unit 2Three dimensional Transformations.2.1Introduction.2.2Three dimensional – Scaling, shearing, rotation, reflection, translation.2.3Multiple transformations.2.4Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space2.5Reflection through an Arbitrary planeUnit 3Linear Programming Problem I83.1Development of Operations Research.3.2Definition of Operations Research.3.2Definition of Operations Research	TT •4 1	T I	· · · · · · · · · · · · · · · · · · ·	0
1.1 Introduction. 1.2 Representation of points. 1.3 Transformations and matrices. 1.4 Transformation of points. 1.5 Transformation of straight lines 1.6 Midpoint Transformation 1.7 Transformation of parallel lines 1.8 Transformation of parallel lines 1.8 Transformation of intersecting lines 1.9 Transformations, reflections, scaling, shearing. 1.10 Combined transformations. 1.11 Transformation of a unit square. 1.12 Solid body transformations. 1.13 Translations and homogeneous coordinates. 1.14 Rotation about an arbitrary point. 1.15 Reflection through an arbitrary line. Unit 2 Three dimensional Transformations 0 2.1 1 Introduction. 2.3 Multiple transformations. 2.4 Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space 2.5 Reflection through an Arbitrary plane Unit 3 Linear Programming Problem I 8 3.1 <td< td=""><td>Unit I</td><td>Two din</td><th>nensional transformations</th><td>δ</td></td<>	Unit I	Two din	nensional transformations	δ
1.2 Representation of points. 1.3 Transformations and matrices. 1.4 Transformation of points. 1.5 Transformation of straight lines 1.6 Midpoint Transformation 1.7 Transformation of parallel lines 1.8 Transformation of parallel lines 1.9 Transformation of intersecting lines 1.9 Transformation: rotations, reflections, scaling, shearing. 1.10 Combined transformations. 1.11 Transformation of a unit square. 1.12 Solid body transformations. 1.13 Translations and homogeneous coordinates. 1.14 Rotation about an arbitrary point. 1.15 Reflection through an arbitrary line. Unit 2 Three dimensional Transformations 0 2.1 Introduction. 2.2 Three dimensional – Scaling, shearing, rotation, reflection, translation. 2.3 Multiple transformations. 2.4 Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space 2.5 Reflection through an Arbitrary plane Unit 3 Linear Programming Problem I 8 3.1 Development of Operations Research. 3.2 Definition of Operations Research. 3.2 Definition of Operations Research.	1.1 Introd	uction.		
1.3 Transformations and matrices. 1.4 Transformation of points. 1.5 Transformation of straight lines 1.6 Midpoint Transformation 1.7 Transformation of parallel lines 1.8 Transformation of intersecting lines 1.9 Transformation: rotations, reflections, scaling, shearing. 1.10 Combined transformations. 1.11 Transformation of a unit square. 1.12 Solid body transformations. 1.13 Translations and homogeneous coordinates. 1.14 Rotation about an arbitrary point. 1.15 Reflection through an arbitrary line. Unit 2 Three dimensional Transformations 0 2.1 2.2 Three dimensional Transformations. 2.3 Multiple transformations. 2.4 Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space 2.5 Reflection through an Arbitrary plane Unit 3 Linear Programming Problem I 8 3.1 Development of Operations Research. 3.2 Definition of Operations Research.	1.2 Repre	sentation	of points.	
1.4 Transformation of points. 1.5 Transformation of straight lines 1.6 Midpoint Transformation 1.7 Transformation of parallel lines 1.8 Transformation of intersecting lines 1.9 Transformations, reflections, scaling, shearing. 1.10 Combined transformations. 1.11 Transformation of a unit square. 1.12 Solid body transformations. 1.13 Translations and homogeneous coordinates. 1.14 Rotation about an arbitrary point. 1.15 Reflection through an arbitrary point. 1.15 Reflection through an arbitrary line. Unit 2 Three dimensional Transformations 2.1 Introduction. 2.2 Three dimensional – Scaling, shearing, rotation, reflection, translation. 2.3 Multiple transformations. 2.4 Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space 2.5 Reflection through an Arbitrary plane Unit 3 Linear Programming Problem I 8 3.1 Development of Operations Research. 3.2 3.2 Definition of Operations Research 3.2	1.3 Trans	formation	s and matrices.	
1.5 Transformation of straight lines 1.6 Midpoint Transformation 1.7 Transformation of parallel lines 1.8 Transformation of intersecting lines 1.9 Transformation: rotations, reflections, scaling, shearing. 1.10 Combined transformations. 1.11 Transformation of a unit square. 1.12 Solid body transformations. 1.13 Translations and homogeneous coordinates. 1.14 Rotation about an arbitrary point. 1.15 Reflection through an arbitrary line. Unit 2 Three dimensional Transformations 2.1 Introduction. 2.2 Three dimensional – Scaling, shearing, rotation, reflection, translation. 2.3 Multiple transformations. 2.4 Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space 2.5 Reflection through an Arbitrary plane Unit 3 Linear Programming Problem I 8 3.1 Development of Operations Research. 3.2 3.2 Definition of Operations Research. 3.2	1.4 Trans	formation	of points.	
1.6 Midpoint Transformation 1.7 Transformation of parallel lines 1.8 Transformation of intersecting lines 1.9 Transformation: rotations, reflections, scaling, shearing. 1.10 Combined transformations. 1.11 Transformation of a unit square. 1.12 Solid body transformations. 1.13 Translations and homogeneous coordinates. 1.14 Rotation about an arbitrary point. 1.15 Reflection through an arbitrary line. Unit 2 Three dimensional Transformations 2.1 Introduction. 2.2 Three dimensional – Scaling, shearing, rotation, reflection, translation. 2.3 Multiple transformations. 2.4 Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space 2.5 Reflection through an Arbitrary plane Unit 3 Linear Programming Problem I 8 3.1 Development of Operations Research. 3.2 Definition of Operations Research	1.5 Trans	formation	of straight lines	
1.7 Transformation of parallel lines 1.8 Transformation of intersecting lines 1.9 Transformation: rotations, reflections, scaling, shearing. 1.10 Combined transformations. 1.11 Transformation of a unit square. 1.12 Solid body transformations. 1.13 Translations and homogeneous coordinates. 1.14 Rotation about an arbitrary point. 1.15 Reflection through an arbitrary line. Unit 2 Three dimensional Transformations 2.1 Introduction. 2.2 Three dimensional – Scaling, shearing, rotation, reflection, translation. 2.3 Multiple transformations. 2.4 Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space 2.5 Reflection through an Arbitrary plane Unit 3 Linear Programming Problem I 8 3.1 Development of Operations Research. 3.2 Definition of Operations Research	1.6 Midp	oint Trans	formation	
1.8 Transformation of intersecting lines 1.9 Transformation: rotations, reflections, scaling, shearing. 1.10 Combined transformations. 1.11 Transformation of a unit square. 1.12 Solid body transformations. 1.13 Translations and homogeneous coordinates. 1.14 Rotation about an arbitrary point. 1.15 Reflection through an arbitrary line. Unit 2 Three dimensional Transformations 6 2.1 Introduction. 2.2 Three dimensional – Scaling, shearing, rotation, reflection, translation. 2.3 Multiple transformations. 2.4 Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space 2.5 Reflection through an Arbitrary plane Unit 3 Linear Programming Problem I 8 3.1 Development of Operations Research. 3.2 Definition of Operations Research.	1.7 Trans	formation	of parallel lines	
1.9 Transformation: rotations, reflections, scaling, shearing. 1.10 Combined transformations. 1.11 Transformation of a unit square. 1.12 Solid body transformations. 1.13 Translations and homogeneous coordinates. 1.14 Rotation about an arbitrary point. 1.15 Reflection through an arbitrary line. Unit 2 Three dimensional Transformations 6 2.1 Introduction. 2.2 Three dimensional – Scaling, shearing, rotation, reflection, translation. 2.3 Multiple transformations. 2.4 Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space 2.5 Reflection through an Arbitrary plane Unit 3 Linear Programming Problem I 8 3.1 Development of Operations Research. 3.2 Definition of Operations Research	1.8 Trans	formation	of intersecting lines	
1.10 Combined transformations. 1.11 Transformation of a unit square. 1.12 Solid body transformations. 1.13 Translations and homogeneous coordinates. 1.14 Rotation about an arbitrary point. 1.15 Reflection through an arbitrary line. Unit 2 Three dimensional Transformations 6 2.1 Introduction. 2.2 Three dimensional – Scaling, shearing, rotation, reflection, translation. 2.3 Multiple transformations. 2.4 Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space 2.5 Reflection through an Arbitrary plane Unit 3 Linear Programming Problem I 8 3.1 Development of Operations Research. 3.2 Definition of Operations Research.	1.9 Trans	formation	: rotations, reflections, scaling, shearing.	
1.11 Transformation of a unit square. 1.12 Solid body transformations. 1.13 Translations and homogeneous coordinates. 1.14 Rotation about an arbitrary point. 1.15 Reflection through an arbitrary line. Unit 2 Three dimensional Transformations 6 2.1 Introduction. 2.2 Three dimensional – Scaling, shearing, rotation, reflection, translation. 2.3 Multiple transformations. 2.4 Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space 2.5 Reflection through an Arbitrary plane Unit 3 Linear Programming Problem I 8 3.1 Development of Operations Research. 3.2 Definition of Operations Research	1.10 Comb	oined trans	formations.	
1.12 Solid body transformations. 1.13 Translations and homogeneous coordinates. 1.14 Rotation about an arbitrary point. 1.15 Reflection through an arbitrary line. Unit 2 Three dimensional Transformations 6 2.1 Introduction. 2.2 Three dimensional – Scaling, shearing, rotation, reflection, translation. 2.3 Multiple transformations. 2.4 Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space 2.5 Reflection through an Arbitrary plane Unit 3 Linear Programming Problem I 8 3.1 Development of Operations Research. 3.2 Definition of Operations Research	1.11 Trans	formation	of a unit square.	
1.13 Translations and homogeneous coordinates. 1.14 Rotation about an arbitrary point. 1.15 Reflection through an arbitrary line. Unit 2 Three dimensional Transformations 6 2.1 Introduction. 2.2 Three dimensional – Scaling, shearing, rotation, reflection, translation. 2.3 Multiple transformations. 2.4 Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space 2.5 Reflection through an Arbitrary plane Unit 3 Linear Programming Problem I 8 3.1 Development of Operations Research. 3.2 Definition of Operations Research	1.12 Solid	body trans	sformations.	
1.14 Rotation about an arbitrary point. 1.15 Reflection through an arbitrary line. Unit 2 Three dimensional Transformations 6 2.1 Introduction. 2.2 Three dimensional – Scaling, shearing, rotation, reflection, translation. 2.3 Multiple transformations. 2.4 Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space 2.5 Reflection through an Arbitrary plane Unit 3 Linear Programming Problem I 8 3.1 Development of Operations Research. 3.2 Definition of Operations Research.	1.13 Trans	lations and	homogeneous coordinates.	
1.15 Reflection through an arbitrary line.Unit 2Three dimensional Transformations2.1 Introduction.2.2 Three dimensional – Scaling, shearing, rotation, reflection, translation.2.3 Multiple transformations.2.4 Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space2.5 Reflection through an Arbitrary planeUnit 3Linear Programming Problem I83.1 Development of Operations Research.3.2 Definition of Operations Research	1.14 Rotat	ion about	an arbitrary point.	
Unit 2Three dimensional Transformations62.1 Introduction.2.2 Three dimensional – Scaling, shearing, rotation, reflection, translation.2.2 Three dimensional – Scaling, shearing, rotation, reflection, translation.2.3 Multiple transformations.2.4 Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space2.5 Reflection through an Arbitrary planeUnit 3Linear Programming Problem I83.1 Development of Operations Research.3.2 Definition of Operations Research	1.15 Reflec	ction throu	igh an arbitrary line.	
2.1 Introduction. 2.2 Three dimensional – Scaling, shearing, rotation, reflection, translation. 2.3 Multiple transformations. 2.4 Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space 2.5 Reflection through an Arbitrary plane Unit 3 Linear Programming Problem I 8 3.1 Development of Operations Research. 3.2 Definition of Operations Research	Unit 2	Three d	imensional Transformations	6
2.2 Three dimensional – Scaling, shearing, rotation, reflection, translation. 2.3 Multiple transformations. 2.4 Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space 2.5 Reflection through an Arbitrary plane Unit 3 Linear Programming Problem I 8 3.1 Development of Operations Research. 3.2 Definition of Operations Research	2.1 Introdu	action.		
2.3 Multiple transformations. 2.4 Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space 2.5 Reflection through an Arbitrary plane Unit 3 Linear Programming Problem I 8 3.1 Development of Operations Research. 3.2 Definition of Operations Research	2.2 Three	dimension	al - Scaling, shearing, rotation, reflection, transl	ation.
2.4 Rotation about – an axis parallel to coordinate axes, an arbitrary axis in space 2.5 Reflection through an Arbitrary plane Unit 3 Linear Programming Problem I 8 3.1 Development of Operations Research. 3.2 Definition of Operations Research	2.3 Multip	2.3 Multiple transformations.		
2.5 Reflection through an Arbitrary plane Unit 3 Linear Programming Problem I 8 3.1 Development of Operations Research. 3.2 Definition of Operations Research	2.4 Rotatio	on about –	an axis parallel to coordinate axes, an arbitrary a	axis in space
Unit 3Linear Programming Problem I83.1 Development of Operations Research. 3.2 Definition of Operations Research	2.5 Reflec	tion throu	gh an Arbitrary plane	
3.1 Development of Operations Research.3.2 Definition of Operations Research	Unit 3	Linear l	Programming Problem I	8
3.2 Definition of Operations Research	3.1 Develo	pment of	Operations Research.	I
	3.2 Definiti	on of Ope	rations Research	

- 3.4 Introduction of linear Programming
- 3.5 Requirements of a linear programming problem
- 3.6 Areas of applications of linear Programming
- 3.7 Formulation of linear programming problems.
- 3.8 Graphical Method of a solution
- 3.9 Some Exceptional cases
- 3.10 The General linear Programming Problem
- 3.11 Canonical and Standards Forms of linear Programming Problem
- 3.12 Theory of Simplex Method

Unit 4 Transportation Models

- 4.1 Introduction to the model
- 4.2 Assumptions in the Transportation Model
- 4.3 Definition of the transportation Problems.
- 4.4 Matrix Terminology
- 4.5 Formulation and Solution Transportation Models
- 4.6 Variants in Transportation Problems
- 4.7 Additional problems

Learning Outcomes

On the completion of the course student will be able to:

- 1. Evaluate 3D transformations.
- 2. Demonstrate knowledge of key notions and principles related to 2 dimensional transformations.
- 3. Identify the role of Linear programming problem solving skill in real life business model.
- 4. Develop mathematical and computational modeling of real decision making problems.

Learning Resources

- 1. Mathematical elements for Computer graphics, F. Rogers, J. A. Adams, Mc Graw Hill 2nd Edition.
 - Unit 1: Chapter 2: Sec. 2-1 to 2.17,
 - Unit 2: Chapter 3: Sec. 3.1 to 3.1
- Operations Research, Prem Kumar Gupta ,D.S. Hira , Revised edition. Unit 3 :Chapter 1: Sec 1.1 to 1.3 ,Chapter 2 : Sec 2.1, 2.2, 2.5, 2.6, 2.9 to 2.13 Unit 4: Chapter 3: Sec 3.1 to 3.7
- 3. Computer Graphics with OpenGL, Donald Hearn, M. Pauline Baker, Warren Carithers, Pearson, 4th Edition
- 4. Operations Research and Introduction by H. A. Taha. Pearson Publication, 9th Edition.
- 5. Operations Research by Panneerselvam, Prentice Hall of India, 2nd Edition.
- 6. Operations Research, Theory and Applications by J. K. Sharma, Trinity publication, 6th Edition

8

	Subject Code:			
Sub	ject Title: Math	ematics Practical Python Program	nmi	ing Language-I
	Semester III	/IV Minor Paper 4 and Paper 6	(Pr	actical)
Teaching SchemeNo. of CreditsExamination Scheme				
4 Hours/ per week/per batch 2 CE: 15 mark				CE: 15 marks
				ESE: 35 marks
Learning O	bjectives			
1. The prog	ramming language	e Python and its application in math	nem	atical computations.
2. The basic	syntax and featur	es of Python programming, as well	l as	mathematical concepts
like linea	r algebra and num	erical methods.		
	1	Course Contents		
Unit 1	Introduction to	Python		
1.1 Inst	allation of Python	·		
1.2 Val	ues and types: int	float and str,		c · 11
1.3 Vai	ables: assignmen	t statements, printing variable valu	es, t	ypes of variables.
1.4 Ope	erators, operands a	ind precedence:+, -, /, *, **, % PEN	MD/	AS(Rules of
1 5 Stri	ng operations: 1 :	Concetenation * · Ponetition		
1.5 Sui	lig operations. +.	Concatenation, * . Repetition		
1.0 Dot 1.7 Cot	nparison operator	s· - > - <i><</i> -		
	vical operators: an	d or not		
1.0 L0g	thematical function	ns from math cmath modules Kevl	hoai	rd input· input()
stat	ement Division A	lgorithm (without Proof)		
Unit 2	String, list, tup	e		
2 1 Stri	ngs			
2.1 501	1 Length (Len	function)		
2.1	2 String traversal	· Using while statement Using for	stat	ement
2.1	3String slice	. Comp while statement, Comp for	Stat	
2.1	.4Comparison op	erators (>. Binary Operation)		
2.2 Lis	its			
2.2.1 List operations				
2.2.2 Use of range function				
2.2.3 Accessing list elements				
2.2.4 List membership and for loop				
2.2.5 List operations				
2.2.6 Updating list: addition, removal or updating of elements of a list				
2.3 Tuples				
2.3	.1 Defining a tu	ple,		

-	3.2 Index operator,	
2.	3.3 Slice operator,	
2.	3.4 Tuple assignment, Tuple as a return value	
Unit 3	Iterations and Conditional statements	
3.1 if-else	Conditional and alternative statements, Chained and Nest	ed Conditionals: if,
3.2 L	poping statements such as while, for etc. Tables using wh	ile
3.3 Fi	inctions	
	3.3.1 Calling functions: type, id	
	3.3.2 Type conversion: int, float, str	
	3.3.3 Composition of functions	
	3.3.4 User defined functions, Parameters and arguments	
Unit 4	Linear Algebra	
4.2 Add 4.3 Acc 4.4 Dete 4.5 Solv	essing Rows and Columns, Deleting and Inserting Rows erminant, reduced row echelon form, null space, columns ving systems of linear equations (Gauss Elimination Meth	and Columns pace, Rank nod, Gauss Jordan
Method 4.6 Eige	, LU-decomposition Method) envalues, Eigen vectors.	
Method 4.6 Eige Unit 5	, LU-decomposition Method) envalues, Eigen vectors. Numerical methods in Python	
Method 4.6 Eige Unit 5 5.1 Roo 5.2 Nev	, LU-decomposition Method) envalues, Eigen vectors. Numerical methods in Python ots of Equations vton-Raphson Method	
Method 4.6 Eige Unit 5 5.1 Roo 5.2 Nev 5.3 Fals	, LU-decomposition Method) envalues, Eigen vectors. Numerical methods in Python ots of Equations vton-Raphson Method se Position (Regula Falsi) Mehtod	
Method 4.6 Eige Unit 5 5.1 Roc 5.2 Nev 5.3 Fals 5.4Nun	, LU-decomposition Method) envalues, Eigen vectors. Numerical methods in Python ots of Equations vton-Raphson Method se Position (Regula Falsi) Mehtod herical Integration	
Method 4.6 Eige Unit 5 5.1 Roc 5.2 Nev 5.3 Fals 5.4Nun	LU-decomposition Method) envalues, Eigen vectors. Numerical methods in Python ots of Equations vton-Raphson Method se Position (Regula Falsi) Mehtod herical Integration 5.4.1 Trapezoidal Rule,	
Method 4.6 Eige Unit 5 5.1 Roc 5.2 Nev 5.3 Fals 5.4Nun	LU-decomposition Method) envalues, Eigen vectors. Numerical methods in Python ots of Equations vton-Raphson Method se Position (Regula Falsi) Mehtod herical Integration 5.4.1 Trapezoidal Rule, 5.4.2 Simpson's 1/3rd Rule,	
Method 4.6 Eige Unit 5 5.1 Roc 5.2 Nev 5.3 Fals 5.4Nun	LU-decomposition Method) envalues, Eigen vectors. Numerical methods in Python ots of Equations vton-Raphson Method se Position (Regula Falsi) Mehtod nerical Integration 5.4.1 Trapezoidal Rule, 5.4.2 Simpson's 1/3rd Rule, 5.4.3 Simpson's 3/8th Rule	
Method 4.6 Eige Unit 5 5.1 Roc 5.2 Nev 5.3 Fals 5.4Nun	LU-decomposition Method) envalues, Eigen vectors. Numerical methods in Python ots of Equations vton-Raphson Method se Position (Regula Falsi) Mehtod herical Integration 5.4.1 Trapezoidal Rule, 5.4.2 Simpson's 1/3rd Rule, 5.4.3 Simpson's 3/8th Rule	
Method 4.6 Eige Unit 5 5.1 Roc 5.2 Nev 5.3 Fals 5.4Nun Practical's 1	LU-decomposition Method) envalues, Eigen vectors. Numerical methods in Python ots of Equations vton-Raphson Method se Position (Regula Falsi) Mehtod herical Integration 5.4.1 Trapezoidal Rule, 5.4.2 Simpson's 1/3rd Rule, 5.4.3 Simpson's 3/8th Rule	
Method 4.6 Eige Unit 5 5.1 Roc 5.2 Nev 5.3 Fals 5.4Num Practical's 1 2	LU-decomposition Method) envalues, Eigen vectors. Numerical methods in Python ots of Equations vton-Raphson Method se Position (Regula Falsi) Mehtod herical Integration 5.4.1 Trapezoidal Rule, 5.4.2 Simpson's 1/3rd Rule, 5.4.3 Simpson's 3/8th Rule Introduction to Python, Python Data Types-I (Unit 1) Python Data Types- II (Unit 2)	
Method 4.6 Eige Unit 5 5.1 Roc 5.2 Nev 5.3 Fals 5.4Nun Practical's 1 2 3	Numerical methods in Python Numerical methods in Python ots of Equations vton-Raphson Method se Position (Regula Falsi) Mehtod herical Integration 5.4.1 Trapezoidal Rule, 5.4.2 Simpson's 1/3rd Rule, 5.4.3 Simpson's 3/8th Rule Introduction to Python, Python Data Types-I (Unit 1) Python Data Types- II (Unit 2) Control statements in Python-I (Unit 3- 3.1, 3.2)	
Method 4.6 Eige Unit 5 5.1 Roc 5.2 Nev 5.3 Fals 5.4Num Practical's 1 2 3 4	LU-decomposition Method) envalues, Eigen vectors. Numerical methods in Python ots of Equations vton-Raphson Method se Position (Regula Falsi) Mehtod herical Integration 5.4.1 Trapezoidal Rule, 5.4.2 Simpson's 1/3rd Rule, 5.4.3 Simpson's 3/8th Rule Introduction to Python, Python Data Types-I (Unit 1) Python Data Types- II (Unit 2) Control statements in Python-I (Unit 3- 3.1, 3.2) Control statements in Python-II (Unit 3- 3.3)	
Method 4.6 Eige Unit 5 5.1 Roc 5.2 Nev 5.3 Fals 5.4Nun Practical's 1 2 3 4 5 6	LU-decomposition Method) envalues, Eigen vectors. Numerical methods in Python ots of Equations vton-Raphson Method se Position (Regula Falsi) Mehtod herical Integration 5.4.1 Trapezoidal Rule, 5.4.2 Simpson's 1/3rd Rule, 5.4.3 Simpson's 3/8th Rule Introduction to Python, Python Data Types-I (Unit 1) Python Data Types- II (Unit 2) Control statements in Python-I (Unit 3- 3.1, 3.2) Control statements in Python-II (Unit 3- 3.3) Application: Matrices (Unit 4 – 4.1-4.3)	(Unit A A A A 5)
Method 4.6 Eige Unit 5 5.1 Roc 5.2 Nev 5.3 Fals 5.4Num Practical's 1 2 3 4 5 6 7	LU-decomposition Method) envalues, Eigen vectors. Numerical methods in Python ots of Equations vton-Raphson Method se Position (Regula Falsi) Mehtod herical Integration 5.4.1 Trapezoidal Rule, 5.4.2 Simpson's 1/3rd Rule, 5.4.3 Simpson's 3/8th Rule Introduction to Python, Python Data Types-I (Unit 1) Python Data Types- II (Unit 2) Control statements in Python-I (Unit 3- 3.1, 3.2) Control statements in Python-II (Unit 3- 3.3) Application: Matrices (Unit 4 - 4.1-4.3) Application : Determinants, system of Linear Equations	(Unit 4- 4.4, 4.5)

- 9 Application : Roots of equations (Unit 5-5.1)
- 10 Application : Numerical integration (Unit 5 5.2, 5.3)
- 11 Application : Numerical integration (Unit 5 5.4)

Learning Outcomes

Upon completing this course, students should be able to:

- 1. Understand the basic syntax and programming concepts of Python.
- 2. Use Python to perform basic mathematical computations, such as addition, subtraction, multiplication, and division.
- 3. Use Python to manipulate strings, lists, and tuples.
- 4. Understand and use conditional statements and loops in Python.
- 5. Understand and use functions in Python.
- 6. Use Python to perform linear algebra operations such as matrix addition, subtraction, multiplication, and inversion.
- 7. Understand and apply numerical methods in Python for finding roots of equations and for numerical integration
- 8. Solve systems of linear equations using various methods such as Gauss Elimination GaussJordan and LU-decomposition.

Learning Resources

- 1 How to think like a Computer Scientist: Learning with Python, Downey, A. et al., John Wiley, 2015.
- 2 Introduction to Scientific Computing in Python, Robert Johansson, Apress, 2nd Edition.
- 3 Fundamentals of Python First Programs, Lambert K. A., Cengage Learning India,2015.
- 4 Introduction to Computing and Programming in Python, Guzdial, M. J., Pearson, India, 2012.
- 5 Introduction to Computing Using Python, Perkovic, L., John Wiley, 2nd edition, 2015.
- 6 Python Programming: An Introduction to Computer Science, Zelle, J., Franklin,Beedle & Associates Inc., 2004.
- 7 Matplotlib for Python Developers, Sandro Tosi,Packet Publishing Ltd.(2009)

		Course Code: Title : Basics of Web Designin	g	
Teachir	ng Scheme	Semester III (VSC-2) No. of Credits	Examination Sci	neme
30 Hours 2 CE : 15 marks				
			ESE: 35 mark	TS
Prerequisites	5	·		
Basic	knowledge of the	e internet.		
Learning Ob	ojectives			
1. To ex	plain different co	mponents and technologies of w	eb applications.	
2. To de	velop simple web	pages using HTML, CSS.	~ .	
3. To bu	ild dynamic web	pages with validation using Java	Script.	
		Course Contents		
Unit 1	Web Design Pr	rinciples		4
1.1 Introd	uction to Internet	and World Wide Web		
1.2 Client	Server Architect	ure		
1.3 Comp	onents of Web A	pplication: Front End, Back End	, Communication	
Techr	ologies			
1.4 Web \$	Server Vs Web br	rowser		
1.5 Webs	ite: working, type	es		
1.6 Doma	in Name Server a	ind Uniform Resource locator		
1.7 Basic	principles involv	ed in developing a web site		
1.8 Five (Joiden rules of W	eb designing		
1.9 web.	Standards and we	SC recommendations		
Unit 2	Introduction to	D HTML5		10
2.1 HTML	and its features.			
2.2 What is	s difference betwe	een HTML and HTML5		
2.3 Basic s	tructure of an HT	ML document		
2.4 Block	level Tags and In	line Tags		
2.5 Core A	ttributes of HTM	L- id, style, class, title		
2.6 Workin	ig with Lists, Tab	les, Frames and Iframes		
2.7 Worki	ng with Text and	Image Hyperlinks		
2.8 WOrkm	ig with Forms and	1 Controls		
2.9 HTML	multimedia.			
Unit 3	Introduction to	Cascading Style Sheets		10
		Cascauling Style Sileets		10
3.1 Concep	t of CSS			

3.2 Need of	CSS	
3.3 Creating	g Style Sheet -Inline, External, Embedded CSS.	
3.4 CSS Sel	lectors	
3.5 CSS La	vouts	
3 6 CSS Sty	ling Properties (Background Text Format Controlling Fonts)	
3.7 CSS Bo	x Model navigation har	
<u> </u>		_
Unit 4	JScript	6
4.1 Overvie	w of JavaScript	
4.2 JavaSci	ript Basic Syntax(JS datatypes, JS variables)	
Primiti	ves, Operations and Expressions, Screen Output and keyboard	
input(V	Verification and Validation)	
4.3 JS Con	trol statements and JS Functions	
4.4 JavaSci	ript HTML DOM Events(onmouseup, onmousedown, onclick, onload,	
onmo	useover, onmouseout).	
4.5 JS Strir	ages and JS String methods	
4.6 JS popu	ip boxes(alert, confirm, prompt).	
II. I. I. I.		
Hands on Ex	ercises:	
1. Creating H	TML Pages to implement Block Level Tags.	
2. Creating H	TML Pages to implement inline Level Tags.	
3. HIML Pro	gramming using list and Table tag.	
4. HIML Pro	gramming using image and Hyperlink tag.	
5. HIML Pro	gramming using Frame, IFrame and Form Tag	
6. HTML pro	grams using Inline, Internal and External style sheets.	99
7. Program us	sing HTML and CSS to implement CSS Properties like – CSS Colors, C	22
Border, CS	S Padding, CSS position	
8. Program to	create a CSS document on placing Images at different positions.	
9. Programs u	Ising HTML and CSS to implement CSS Layout Property.	
10 Java Scrip	or program using conditional statements and loops.	
11. Java Scrip	of program demonstrating window object: "alert box", prompt box and "C	onfirm
		,
12. Java Scrip	of program demonstrating use of HIML events like "OnClick", "Onkeydo	own
etc.		
13. Java Scrip	ot program demonstrating Geo Location.	
Learning Ou	tcomes :On completion of this course, students will be able to :	
1. Unders	tand the fundamentals of the Internet and how the web functions.	
2. Design	a static webpage by applying HTML elements.	
3. Apply 0	CSS concepts for designing HTML web pages.	
4.To creat	e dynamic web pages by using HTML,CSS and JavaScript.	
5. To acqu	ire knowledge and skills for creation of web site considering client-side	
program	nming.	
NOWROSJEE	WADIA COLLEGE, PUNE 01	pg. 38

Learning Resources

1.HTML5 and CSS3- WAN BAYROSS - BPB Publications

2.HTML and CSS -Thomas A Powell, 5th Edition

3. Head First HTML and CSS - Elisabeth Robson and Eric Freeman, 2nd Edition, O'Reilly

4. An introduction to Web Design + Programming - Paul S Wang, Sanda S. Katila

5. Java Script - A beginners guide - John Pollock, 3rd Edition, McGraw Hill

Web References

1. http://www.w3schools.com

2. https://html5andcss3.org/

SEMESTER -IV

	Course Code:		
Title : DATA STRUCTURES AND ALGORITHMS-II			
Semester IV Major paper 11			
Teaching Scheme	No. of Credits	Examination Scheme	
30 Hours	02	CE: 15 marks	
		ESE: 35 marks	
Prerequisites			
• Knowledge of C Progra	mming Language		
 Basic knowledge of alg 	orithms		
 Basic knowledge of ling 	ear data structures		
Learning Objectives			
1 To learn the systematic	way of solving problems		
2 To design algorithms	way of solving problems		
2. To understand the diffe	rant matheds of organizing large	amount of data	
4 To efficiently implement	t the non-linear data structures	amount of data	
4. To enterently implement	Course Contents		
Unit 1 Oueue	course contents	6	
1.1 Introduction			
1.2 Operations - init(), enqueue	(), dequeue(), isEmpty(), isFull(), peek(), time complexity of	
operations, differences with	n stack.	,, peen(),,e eoprenity of	
1.3 Implementation - Static and	Dynamic with comparison		
1.4 Types of Queue - Linear O	ueue, Circular Queue, Priority C	Dueue, Double Ended Oueue	
(with implementation)			
1.5 Applications – CPU Sch	eduling in multiprogramming	environment, Round robin	
algorithm			
Unit 2 Tree		10	
2.1 Concept and Terminologies			
2.2 Types of Binary trees - Bin	ary tree, skewed tree, strictly bin	ary tree, full binary tree,	
complete binary tree, expre	ssion tree, binary search tree, He	eap	
2.3 Representation – Static and	Dynamic	•	
2.4 Implementation and Operat	ions on Binary Search Tree - Cr	eate, Insert, Delete, Search,	
Tree traversals- preorder, inor	ler, postorder (recursive implen	nentation)	
2.5 Balanced tree- AVL trees-	Rotations		
2.6 Applications of trees- Heap	o sort(implementation)		
Unit 3 Graph		6	
3.1Concept and terminologies			
3.2 Graph Representation – Adja	cency matrix, Adjacency list, In	verse Adjacency list,	
Adjacency multilist		·	
NOWROSJEE WADIA COLLEGE,	PUNE 01	pg. 40	

8

3.3Graph Traversals – Breadth First Search and Depth First Search (with implementation)
3.4Applications of graph, Topological sorting, Single source shortest path - Dijkstra's algorithm

3.5 Use of graphs in social networks

Unit 4 Hash Table

- 4.1 Concept of Hashing
- 4.2 Terminologies Hash table, Hash function, Bucket, Hash address, collision, synonym, overflow etc.
- 4.3 Properties of good hash function
- 4.4 Hash functions : division function, MID square , folding methods
- 4.5 Collision resolution techniques
- 4.5.1 Open Addressing Linear probing, quadratic probing, rehashing
- 4.5.2 Chaining

Learning Outcomes

On completion of this course students will be able to

- 1. Implementation of different data structures efficiently
- 2. Usage of well-organized data structures to handle large amount of data Usage of appropriate data structures for problem solving

Learning Resources

- 1. Classic Data Structures, D. Samanta, Prentice Hall India Pvt. Ltd, 2nd Edition.
- 2. Fundamentals of Data Structures in C, Ellis Horowitz, Sartaj Sahni, Susan Anderson-Freed, Universities Press, 2nd Edition.
- 3. Data Structures using C and C++, YedidyahLangsam, Moshe J. Augenstein, Aaron M.Tenenbaum, 2nd Edition, Pearson Education.
- 4. Data Structures: A Pseudo code approach with C, Richard Gilberg ,Behrouz A. Forouzan,Cengage Learning, 2nd Edition.

Subject Code: Subject Title: Principles of Multimedia Semester IV (Major Paper 12) Theory					
Teachin 30 H	Feaching Scheme 30 HoursNo. of Credits 2Examination Scheme CE: 15 marks ESE: 35 marks				
Learnin 1. To in 2. To u 3. To ic 4. To u 5. To ic	Learning Objectives 1. To introduce basic components of multimedia 2. To understand different multimedia file formats 3. To identify emerging trends in multimedia 4. To understand the role of compression in multimedia 5. To identify theoretical and practical aspects in designing multimedia systems Course Contents				
Unit 1	Introduction	to Multimedia		5	
1.2 Mult 1.3 Mult 1.4 Mult 1.5 Evol 1.6 Editi 1.7 Mult	 1.1 Goals, objectives, and characteristics of multimedia 1.2 Multimedia building blocks: text, image, audio, video, animation, 1.3 Multimedia Applications 1.4 Multimedia architecture 1.5 Evolving Technologies for Multimedia Systems 1.6 Editing, and Authoring tools 1.7 Multimedia Tronds 				
Unit 2	Text and Ima	age Processing		10	
 2.1 Text: Types of text, Text compression, Text file formats 2.2 Image: Image Data Representation, Image Acquisition, Image Processing, Image File formats, Image compression: Types of Compression: Lossless: RLE, Shannon - Fano algorithm, Arithmetic coding. Lossy: Vector quantization, Fractal Compression Technique, Transform coding and Hybrid: JPEG-DCT 					
Unit 3	Audio and V	ideo Processing		10	
 3.1 Audio: Nature of sound waves, Digital audio, Components of audio system, Digital audio processing, file formats: AIFF, VOC, AVI, WMA, OGG, PCM,MP3,AAC Audio compression techniques: DM, ADPCM and MPEG. 3.2 Video: Digital video, Digital Video Processing, digital Video file formats: AVI, MOV,RM,WAV,FLV,3GP,Video editing, Video Compression: H-261,H-263, MPEG 					
Unit 4	Animation a	nd Virtual Reality		5	
4.1 Principles of Animation, Techniques of animation, Computer based Animation, Rendering Algorithms, Animation File formats, Animation tools.					

4.2 Virtual Reality: Forms of Virtual Reality, VR Applications, Peripheral Devices

Learning Outcomes

1. Understand basic building blocks and applications of Multimedia.

2. Analyze different algorithms for compression

3. Apply acquired knowledge in the field of multimedia.

Learning Resources

1. Principles of Multimedia, Ranjan Parekh, 2nd Edition, TataMcGraw-Hill.

2. Multimedia Computing, Communication and Applications, Ralf Steinmetz and Klara

Nahrstedt, Pearson Education.

3. Fundamentals of Multimedia, Ze-Nian Li, Marks S. Drew, Pearson Education.

	Course Code:			
	Title: Network Security			
Se	mester IV (Major Paper13) Theo	ry		
Teaching SchemeNo. of CreditsExamination Scheme				
30 Hours	2	CE:15 marks		
ESE: 35 marks				
Learning Objectives 1. Expl	ore the different methods used for N	letwork/INTERNE	ET security.	
2. Iden	tify, analyze, and remediate compute	r security breaches	8.	
	Course Contents			
Unit 1	Application Layer		10	
1.1 Domain Name System				
1.1.1 Name space-Flat nam	e space, Hierarchical name space			
1.1.2 Domain Name Space	-Label ,Domain name, FQDN,PQD	N		
1.1.3 Distribution of Doma	n Name Space-Hierarchy of name s	ervers, zone, Root	server,	
Primary and second	ary servers.			
1.1.4 DNS in the Internet: C	Seneric domains, Country domains,i	nverse domain		
1.1.5 Resolution-Resolver,r	napping names to address, mapping	addresses to name	s, recursive	
resolution, iterative	resolution, caching			
1.2 Electronic Mail-				
1.2.1 Architecture-First sce	nario, second scenario, Third scenar	io, Fourth scenario)	
1.2.2 User agent-services of	Euser agent, types of UA Format of	e-mail		
1.2.3 MIME-MIME header				
1.2.4 Message transfer ager	t-SMTP			
1.2.5 Message Access Ager	t: POP and IMAP			
1.3 File Transfer				
1.3.1 FTP-Communication	over data control connection			
1.3.2 File type, data structur	e			
1.3.3 Transmission mode				
1.3.4 anonymous FTP			1	
Unit 2 Introduction	o network and cyber Security		4	
2.1 Introduction: Network Se	curity, Cyber Security, Differences	between Cyber an	d Network	
security				
2.2 Need for Security				
2.3 Security Attacks				
2.3.1Malware Attack,				
2.3.2 Man-in-Middle Attack,				
2.3.3Password, Attack,				
2.3.4 Phishing				
2.4 Services and Mechanisms				
2.5 Network Security Model				
2.5.1 Network Access Cont	rol (NAC)			

2.5.2 Antivirus and Antimalware Software				
2.5.3 Virtua	al Private Networks (VPN)			
2.5.4 Firewall Protection, etc.				
Unit 3	Cryptography	6		
3.1. Termino	logy: Cryptography, plain text and cipher text, cipher key, categories of	f		
3.2. cryptography-Symmetric key, asymmetric key				
3.3. Encrypti	on model			
3.4. Symmetri	ric Key Cryptography			
3.4.1	3.4.1 Traditional ciphers – substitution cipher, shift cipher, Transposition cipher			
3.4.2	Simple Modern ciphers-XOR, Rotation cipher, s-box,p-box			
3.4.3	Modern round ciphers-DES			
3.4.4	Mode of operation-ECB,CBC,CFB,OFB			
3.5. Asymme	tric key Cryptography			
3.6. Need and Principles of Public Key Cryptosystems				
3.7. RSA Alg	gorithm			
3.8. Key Distribution and Management				
3.9. Diffie-Hellman Key Exchange				
3.10. Digital	Signatures	T		
Unit 4	Authentication	5		
4.1 Authentic	cation Requirements			
4.2 Message Authentication Codes				
4.3 Hashes				
4.4 MD5 & S	SHA			
4.5 User Aut	hentication: Password, Certificate based & Biometric Authentication			
4.6 Kerberos	8			
Unit 5	Security Mechanisms and Protocols	5		
5.1 Firewalls				
5.2 IP Secur	ity			
5.3 VPN				
5.4 Intrusion Detection				
5.5 Web Security				
5.6 SSL, TLS				
Learning Outcomes				
On completion of this course students will be able to:				
1. Develop the Concept of Security needed in the Communication of data through computers				
and networks along with Various Possible Attacks				
2. Understand Various Encryption mechanisms for secure transmission of data and				
management of Key required for encryption				
3. Understand	a authentication requirements and study various authentication mechan	isms		
4. Understand network security concepts and study different web security mechanisms				
Learning Resources				

- 1. Data communications and networking by Behrouz Forouzan 4th/5th edition McGraw Hill Pvt Ltd,
- 2. Computer Networks by Andrew S Tanenbaum, Pearson Education
- 3. Cryptography and Network Security: Principles and Practice, William Stallings,7th edition, Pearson Education
- 4. Network Security Essentials: Applications and Standards (For VTU), William Stallings, , 3rd edition,Pearson Education

Course Code:							
Title : Practical course on Data Structures and Algorithms II & Computer Networks							
Semester IV Major paper 14							
Teaching Scheme	No. of Credits	Examination Scheme					
4 hours / per week /per batch	2	CE : 15 marks					
Batch size : 12		ESE: 35 marks					

Lab Book:

The lab book is to be used as a hands-on resource, reference and record of assignment submission and completion by the student. The lab book contains the set of assignments which the student must complete as a part of this course.

Programming Assignments:

Programs should be done individually by the student in the respective login. The codes should be uploaded on either the local server, Moodle, Github or any open source LMS. Print-outs of the programs and output may be taken but not mandatory for assessment. Assessment:

Continuous assessment of laboratory work is to be done based on overall performance and lab assignments performance of student. Each lab assignment assessment will be assigned grade/marks based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as each lab assignment assessment include-timely completion, performance, innovation, efficient codes and good programming practices.

• Internal Evaluation :

- o 10 marks will be given based on Networking assignments.
- 5 marks will be allocated for Assignment completion and practical attendance

University Evaluation :

• The Practical slip will be of 35 Marks which will be based on Advanced Data structures.

Operating Environment:

For Data Structures:

- Operating system: Linux
- **Editor:** Any linux based editor like vi, gedit etc. •
- **Compiler** : cc or gcc

Course Contents :-

Assignment 1:Linear Queue

1. Static and Dynamic implementation of linear Queue to perform following operations: Init, enqueue, dequeue Peek, IsEmpty, IsFull.

Assignment 2 :Circular and Priority Queue

1. Implementation of circular queue Implementation of priority queue

Assignment 3: Binary Search Tree and Traversals

- 1. Implement Binary Search Tree (BST) to perform following operations on BST– Create, Recursive Traversals Inorder, Preorder, Postorder
- 2. Perform following operations: insert, delete

Assignment 4: Applications of Binary Tree

1. Sort set of elements using Heap sort

Assignment 5: Graph implementation

- 1. Implement Graph as adjacency matrix and adjacency list
- 2. Calculate indegree and outdegree of vertices
- 3. Graph traversals: BFS and DFS.

Assignment 6: Networking Assignment-I

Assignment 7: Networking Assignment-II

Assignment 8: Networking Assignment-III

Course Code							
Course Title: Python Programming							
Semester IV (SEC)(Theory)							
Teaching Scheme	No. of Credits	Examination Scheme					
30 Hours	2	CE: 15 marks					
		ESE: 35 marks					
 Learning Objectives To introduce programming concepts using python. Student should be able to develop Programming logic using python. To develop basic concepts and terminology of python programming. To test and execute python programs. 							
	Course Contents						
Unit 1	An Introduction to Python	3					
 1.1 Introduction to Python-History, features, Applications, Installing Python, Running Simple Python program 1.2 Basics of Python 1.3 Standard data types - basic, none, Boolean (true & False), numbers, Variables, Constants, Python identifiers and reserved words, Lines and indentation, multi-line statements and Comments, Input/output with print and input ,functions Declaration, Operations on Data such as assignment, arithmetic, relational, logical and bitwise operations, dry run, Simple Input and output etc. 							
Unit 2	Control Statements	5					
 2.1 Sequence Control – Precedence of operators, Type conversion 2.2 Conditional Statements: if, if-else, nested if-else, 2.3 Looping- for, while, nested loops, loop control statements (break, continue, pass) 2.4 Strings: declaration, manipulation, special operations, escape character, string formatting operator, Raw String, Unicode Strings, Built-in String methods. 							
Unit 3	Lists, functions, tuples and dictionaries, Sets	10					
 3.1 Python Lists: Concept, creating and accessing elements, updating & deleting lists, traversing a List, reverse Built-in List Operators, Concatenation, Repetition, In Operator, Built-in List functions and methods. 3.2 Functions: Definitions and Uses, Function Calls, Type Conversion Functions, Math Functions, Composition, Adding New Functions, Flow of Execution, Parameters and Arguments, Variables and Parameters, Stack Diagrams, Void Functions, Anonymous, functions Importing with from, Return Values, Boolean Functions, More Recursion, Functional programming tools - filter(), map(), and reduce(), recursion, lambda forms. 3.3 Tuples and Dictionaries: Tuples, Accessing values in Tuples, Tuple Assignment, Tuples 							

as return values, Variable-length argument tuples, and Basic tuples operations, Concatenation, Repetition, in Operator, Iteration, Built-in tuple functions, indexing, slicing and matrices. Creating a Dictionary, Accessing Values in a dictionary, Updating Dictionary, Deleting Elements from Dictionary, Properties of Dictionary keys, Operations in Dictionary, Built-In Dictionary Functions, Built-in Dictionary Methods.

3.4 Sets- Definition, transaction of set(Adding, Union, intersection), working with sets

Unit 4	Modules ,Working with files, Exception	12
	nandling	

- 4.1 Modules: Importing module, Creating & exploring modules, Math module, Random module, Time module Packages: Importing package, creating package, examples
- 4.2 Working with files: Creating files and Operations on files (open, close, read, write), File object attributes, file positions, Listing Files in a Directory, Testing File Types, Removing files and directories, copying and renaming files, splitting pathnames, creating and moving directories
- 4.3 Regular Expression- Concept of regular expression, various types of regular expressions, using match function.
- 4.4 Classes and Objects: Overview of OOP (Object Oriented Programming), Class Definition, Creating Objects, Instances as Arguments, Instances as return values, Built-in Class Attributes, Inheritance, Method Overriding, Data Encapsulation, Data Hiding
- 4.5 Multithreaded Programming: Thread Module, creating a thread, synchronizing threads, multithreaded priority queue Modules: Importing module, Creating and exploring
- 4.6 Exception Handling: Built-in Exceptions, Handling Exceptions, Exception with Arguments, User-defined Exceptions.

Learning Outcomes

On completion of the course, student will be able to:

- 1.Develop logic for problem solving
- 2.Determine the methods to create and develop Python programs by utilizing the data
- 3. Structures like lists, dictionaries, tuples and sets.

4. To be familiar about the basic constructs of programming such as data, operations, conditions, loops, functions etc.

5. To write python programs and develop a small application project

Learning Resources

- 1. An Introduction to Computer Science using Python 3 by Jason Montojo, Jennifer Campbell, Paul Gries, The pragmatic bookshelf-2013
- 2. "Beginning Python: Using Python and Python 3.1, James Payne, Wrox Publication
- 3. Introduction to Problem Solving with Python by E Balguruswamy, TMH publication-2016
- 4. Object-oriented Programming in Python, Michael H. Goldwasser, David Letscher, Pearson Prentice Hall-2008