

Nowrosjee Wadia College, Pune.

Two Year Degree Program in Petroleum Technology

(Faculty of Science & Technology)

Revised Syllabi for

M.Sc. (Applied) Petroleum Technology

Part-I

To be implemented from Academic Year 2022-2023

Title of the Course: M.Sc. (Applied) Petroleum Technology

Course Structure

Subject Name	Year	Sem.	Course Type	Course Code	Course Title	Credits
Petroleum Technology				PT-1	Fundamentals of Petroleum Geology	2
				PT-2	Sedimentology	4
			Theory Paper	PT-3	Structural Geology in PetroleumExploration	4
	1	I		PT-4		4
				PTP-1	Practicals related to PT-1 and PT - 2	3
			Practical Paper	PTP-2	Practicals related to PT-3 and PT - 4	3
				PT-5	Petroleum Geochemistry	4
				PT-6	Depositional System Analysis	4
			Theory Paper	PT-7	Petroleum Exploration Techniques	4
	1	II		PT-8	Environmental management and Economics	2
			Practical	PTP-3	Practicals related to PT-5 and PT - 6	3
			Paper	PTP-4	Practicals related to PT-7 and PT - 8	2
				FWC	Field Work Component	1

SEMESTER - I

(20 Credits)

PT-1: Fundamentals of Petroleum Geology (2 Credits) (30 Hours)

Topics	No. of Lectures
Unit I: Petroleum and its occurrence	3
A. Petroleum: A Natural Resource	3
i) Historical Overview of Search for Petroleum	
ii) Definition and Relation of Petroleum Geology to other Sciences	
iii) Exploration: Role of Geosciences and the major challenges for	or
Petroleum Geology and its significance in different phases	
exploration and production	3
B. Surface Indications and direct detection of Hydrocarbons:	
i) Modes of surface and subsurface occurrence	
ii) Factors controlling the occurrence of petroleum	
iii) Introduction to unconventional resources of Hydrocarbons – G	
Hydrates, Shale Gas, Basin Centric Gas, Coal Bed Methane, Tig	ht
Gas Sands	6
C. Introduction to the oil industry:	
i) Importance of study of reservoir rock and cap rock, abnorm	al
pressure, basics of sample descriptions	h
ii) Introduction to exploration techniques, rig structure and parts, journal profiles on site, importance of well plan, basics of circulation	
rotation hoisting and well control systems)II
iii) Introduction to QHSE, demands of the oil industry, time-bour	nd
final submissions, meeting deadlines	
Unit II: Origin, Migration and Accumulation of Crude Oil and Natural Gas	S
A. Origin of Petroleum:	4
i) Theories of Organic and Inorganic origin	
ii) Source rock concept	
iii) Kerogen: Source Material and Formation, Composition ar	nd
Distribution, Oil window concept	
B. Migration and accumulation of Oil and Natural Gas:	4
i) Primary and Secondary Migration	
ii) Trapping mechanism and formation of oil and gas	
iii) Fields: Types of trapping mechanism (structural, stratigraphy ar	ia
fluid types), traps associated with salt domes C. Porosity and Permeability:	4
i) Types, origin and Geological factors influencing porosity ar	4
permeability	iu
ii) Inhibition and Wettability, Capillarity	
iii) Displacement Pressure and Relative Permeability	
Assessment / Presentation / Group Discussions	6
DEFEDENCES	
REFERENCES 1. A. L. Layerson (2nd adition, 2004) Goology of Patrology	
 A. L. Leverson (2nd edition, 2004) Geology of Petroleum F. K. North (1985) Petroleum Geology 	
2. 1. K. Horur (1763) I choleum Geology	

- 3. B. G. Deshpande (1992) The World of Petroleum
- 4. G. D. Hobson, F L Tiratsoo (1975) Introduction to Petroleum Geology.
- 5. R. E. Chapman (1989) Petroleum Geology.

PT-2: Sedimentology (4 Credits) (60 Hours)

	Topics	No. of Lectures
Unit I	: Introduction	3 2 3 3 2 4 5
A.	Role of Sedimentology in Petroleum Industry.	1
B.	Sedimentary Processes and Classification of Sedimentary Rocks:	3
	i) Processes of sedimentation (Erosion / Weathering, Transportation	
	and Deposition), Lithification & Digenesis.	
	ii) Classification and description of some common sedimentary rocks	
	(Conglomerate, Sandstone, Shale, Limestone).	
C.	Mechanism of sediment transportation:	4
	Fluid properties & fluid motion:	
	i) Physical properties of fluid	
	ii) Stokes Law	
	iii) Reynolds number & Froude number	
	iv) Laminar & Turbulent flow	
D.	Modes of transportation of sediment grains and Sediment gravity flows:	4
	i) Sediment grain movement.	
	ii) Grainflows, Debris flows, Liquefied flows & Turbidity	
	flows;	
	iii) Deposits of sediment gravity flows.	
Unit I	I: Hydrodynamics of Depositional Environments (Part I)	
	Introduction:	2
	i) Physical Parameters of Depositional Environments.	2
	ii) Importance of study of Primary Sedimentary Structures.	
B.	Hydrodynamic factors & Bed forms in water:	10
	i) Concept of flow regime.	
	ii) Classification & characteristics of Flow regimes.	
	iii) Current ripple and its geometrical features.	
	iv) Bed forms characterizing different flow regimes.	
	v) Study of following bed forms based on their morphology,	
	internal structures, genetic classification, genesis & phase	
	diagrams:	
	vi) Plane bed phase, Small ripples, Mega ripples, Giant ripples,	
	and Antidunes.	
	vii)Bed load transport: i) Migration of bed forms ii) Bed forms in	
	relation withstream power & water depth iii) Depth-velocity-	
	size diagram.	
	II: Hydrodynamics of Depositional Environments (Part II)	_
A.	Wave Ripples:	4
	i) Symmetrical & Asymmetrical wave ripples.	
D	ii) Combined current / wave ripples, Isolated ripples, Wind ripples.	2
В.	Bedding types:	3

M. Sc.	ii st i teai	Petroleum Tecl
	i) Cross bedding	
	ii) Climbing ripple lamination	
	iii) Flaser & Lenticularbedding	
	iv) Graded bedding	
C.	Bed forms caused by erosion of cohesive sediments	2
D.	Biogenic & Organo-sedimentary structures:	1
	i) Stromatolites	
	ii) Tracefossils	
E.	Digenetic (soft sediment) deformation structures	2
Unit	IV: Sedimentary Environments	
A.	Introduction	6
11.	i) Concept of Sedimentary Environment	
	ii) Classifications of Sedimentary Environments	
	iii) Study of Sedimentary Environments based on physical, chemical,	
	biological & geomorphic variables:	
	a) Continental / Non-marine: Desert, Alluvial fans, Fluvial,	
	Lacustrine & Glacial	
	b) Transitional: Delta, Estuarine, Beach & Clastic shelves	
	c) Marine: Continental shelf, slope, Abyssal plains & Pelagic	
В.	Techniques of Environmental interpretation	6
	i) Relationship between Sedimentary Environments & Sedimentary	
	Facies (Walther's law) Methods of Environmental diagnosis:	
	i) Surface Environmental Interpretation: Field sedimentology & Outcrop	
	analysis) based on: a) Geometry b) Lithology c) Syn-pre & post	
	depositional structures d) Paleocurrent patterns e) Fossils	
	ii) Subsurface Environmental interpretation based on: a) Core	
	description b) Vertical grainsize profile from geophysical logs (SP&	
	gamma logs)	
	ganina logs)	
•	Assignments/Presentations/Evaluation	12
REFE	RENCES	
1.	R. C. Selley (2000) Applied Sedimentology.	
	Boggs, Jr, S. (2009) Petrology of Sedimentary Rocks (2nd ed.).	
	H. E. Reineck & I. B. Singh (1974) Depositional Sedimentary	
	Environments.	
4.	R. Lindholm (1987) A Practical Approach to Sedimentology.	
	F. J. Pettijohn (2004) Sedimentary Rocks (3 rd ed.)	
6.	Gary Nichols (2009) Sedimentology and Stratigraphy (2 nd ed.)	
	Kölbl, L. (1967) Sedimentology and the petroleum industry. Sedimentary	
	Geology.	
		1

PT-3: Structural Geology in Petroleum Exploration (4 credits) (60 Hours)

Topics	No. of Lectures
Unit I: Structural Geology in Petroleum Studies	
A. Introduction	2
i) Uses and Value of Structural Geology	2
ii) Scope of Structural Geology	
iii) Development of Structural Geology	
iv) Definitions of Structural Geology	
v) Qualifications and Duties of a Structural Geologist	
vi) Types of Instruction Needed in Structural Geology	
B. Classification of Traps for Oil and Gas Accumulation	5
i) Stratigraphic relations of Structural traps	
ii) Relations of Lithologic variations in a Reservoir to closure and	
closed area	
iii) Definitions	
iv) Recommended classification	
v) Regional variations in types	
vi) Relation to Age and Lithology of rocks	
vii)Cover rocks	
C. Structural Factors in Petroleum Prospecting	5
i) Relative importance of structural data	
ii) Practical considerations in Wildcatting	
iii) Chances of Finding production on Untested traps	
iv) Nonstructural factors	
v) Regional structural conditions	
vi) Local structural conditions	
vii)Combination of structural and stratigraphic methods in	
prospecting	
viii) Use of structure in developing fields after discovery	
ix) Difficulty of finding oil	
x) Mental factors in Wildcatting	
xi) Future of Structural Geology in the Oil industry	
Unit II: Folds and Joints	10
A. Folds ;) Characteristics and nature	
i) Characteristics and nature	
ii) Parts of fold	
iii) Types of folds iv) Machanical adjustments	
iv) Mechanical adjustmentsv) Characteristics of folds important to petroleum geologist	
B. Joints and Fractures	2
i) Definitions	2
ii) Uses and geological relations of Joints	
iii) Fractures as reservoir rocks	
m, ractures as reservoir rocks	
Unit III: Faults	12
i) Nature	
ii) Fault plane	

M. Sc. First Yea	ır
------------------	----

M. Sc. First Year iii) Classification iv) Types	
	1
iv) Types	
v) Nomenclature of features associated with Fault plane	
vi) Structures associated with Faults	
vii)Recognition in the field	
viii)Topographic expression	
ix) Expression on aerial maps	
x) Expression on Airplane photographs	
xi) Expression on Structure contour and Isopach maps	
xii)Determining movements along faults	
xiii) Closure and closed area of faulted structures	
xiv)Reversal due to faulting	
xv) Relations of faults to folds	
xvi) Relation of faults and folds to basement structures	
xvii) Relation of oil and gas fields to faults	
Unit IV: Unconformities, Salt Domes and Buried Hills A. Unconformities	4
	4
i) Definition and types ii) Stratigraphic and structural relations	
ii) Stratigraphic and structural relations	
iii) Recognition at the surface	
iv) Recognition on aerial maps	
v) Recognition of subsurface unconformities	
vi) Relation to traps for oil and gas accumulation	
vii)Effect on oil and gas prospects	
B. Salt Domes	4
i) Importance and value	
ii) Geographic distribution	
iii) Types	
iv) Salt stock	
v) Overhang	
vi) Cap rock	
vii) Topographic expression and surface indications	
viii) Geologic expression	
ix) Residual highs and other salt structures	
x) Oil and gas production	
xi) Effect of faulting on producing reservoirs	
xii)Discovery methods	
xiii) Salt domes on Continental shelf	
C. Buried hills and Compaction	4
i) Factors and processes of Compaction	
ii) Traps due to Compaction	
iii) Traps related to Buried hills	
Assignments/Presentations/Evaluation	12
REFERENCES	
1. John G. Ramsay & Samp; Martin I. Huber (1987): The Techniques of	
Modern Structural Geology; Folds and Fractures Vol.2, Academic Press	
Publication Publication	
2. Stehen M. Rowland, Ernest M. Duebendorfer, Ilsa M. Schiefelbein	
(2007); Structural Analysis and Synthesis, Wiley Publication	

3. Daniel J. Tearpock, Richard E. Bischke · (1991); Applied Subsurface Geological mapping, Prentice Hall Publication, the University of California

- 4. Russell, W. L. (William Low). (1955). Structural geology for petroleum geologists. New York: McGraw-Hill.
- 5. Kent C. Condie. (1997). Plate tectonics and Crustal evolution. Elsevier Publication.
- 6. Valdia K.S. (1984). Aspects of tectonics: focus on south central Asia. Tata McGrew Hills, New Delhi.
- 7. John G.Ramsay. (1980) Structural Geology-Strain Analysis Vol.1 Academic Press Publication
- 8. Peter C. Badgley (2009). Structural Methods for the Exploration Geologist. New York; McGraw-Hill publication.
- 9. Park R.G (2013) Foundations of Structural Geology. Third edition. Routledge Publication.

PT-4: Stratigraphy and Micropalaeontology (4 credits) (60 Hours)

	Topics	No. of Lectures
Ilnit I	: Stratigraphy	
	Introduction: Historical Development, Basic Principles of Stratigraphy, Importance of Stratigraphy, Standard Stratigraphic Classification and Nomenclature: IUGS Classification.	3
В.	Elements of Stratigraphy with their Units. Description of each Unit: i) Chrono Stratigraphy: ii) Litho Stratigraphy; iii) Bio Stratigraphy; iv) Magneto Stratigraphy; v) Chemo Stratigraphy; vi) Sequence Stratigraphy; vii) Seismic Stratigraphy;	4
	Stratigraphic Procedures: Outcrop and Sub Surface Procedures; Stratigraphic Correlation: Types; Evidence; Inter and Intra Basinal Correlation.	1 2
E.	Facies Concept and Lateral Variation: Litho Facies, Bio Facies; Lateral Variation with examples.	2
Unit I	I: Geology of India & Ostracoda	
	Geology of India: Introduction & Tectonic Framework of India. Cratons (Dharwar, Bastar, Singhbhum, Bundelkhand and Aravalli) Mobile Belts (Eastern Ghats, Pandyan, Satpura, Precambrian of Himalaya).	1 2 1
	Proterozoic ('Purana') Sedimentary Basins (Vindhyan Basin, Chhattisgarh basin, Khariar Basin, Bastar Basins, Pranhita-Godavari Basin, Cuddapah Basin, Kaladgi Basin and Bhima Basin) Phanerozoic - (Palaeozoic, Gondwana super group, Mesozoic, Deccan	3
E.	Volcanic province, Cenozoic - Tertiary, Quaternary) Study of Ostracoda: Taxonomy, Characters: Size, Locomotion, Environment & Mode of Life; Morphology: Wall Structure, Hinge	3
	Structure, Ornamentation & Surface Texture; Orientation of Carapace. Ecology (Substrate and food, salinity, depth and temperature).	2
T] 24 T	II. Migrapologoptology	
	II: Micropalaeontology Definition, Scope, branches and applications of Micropaleontology Types of Microfossils and their morphology, ecology, range and utility of following microfossils:	1 3
C	Acritarchs, Tasmanitids, Diatoms, Coccoliths, Silicoflagellates, Dinoflagellates, Tintinnids & Calpionellids, Radiolarians, Conodonts and Sponge Spicules. Licas/Applications, of Microfoscilla, In Patrologue, Evaluation, with	
C.	Uses/Applications of Microfossils: In Petroleum Exploration with examples.	1
D.	Study of Foraminifera: i) Taxonomy, Test Morphology: Wall Structure and composition, Chamber architecture, Apertures and foramina.	6

M. Sc. First Year	Petroleum Ted
ii) Foraminiferal ecology: Smaller benthics (Light, food, Substrate,	
Salinity, Nutrients and oxygen, Temperature & Diversity) and	
Larger benthics.	
iii) Classification By Loeblich & Tappan (1987) up to level of Sub	
Orders.	
iv) Geological history of foraminifera	
E. Palynology: Morphology of Pollens & Spores; Distribution and	1
ecology and Geological history	
Unit IV: Petroliferous Basins of India	
	0
A. Study of following Petroliferous basins of India with reference to	
geological setting, biostratigraphy, tectonics, structure and petroleum	
prospects:	
i) Bombay basin	
ii) Krishna-Godavari basin	
iii) Assam basin	
iv) Cauvery basin	
v) Rajasthan basin	
B. Major Oil & Gas fields of the Middle east	4
i) Dukhan Field - Qatar	4
ii) Yibal & Mukhaizna Field - Oman	
iii) Burgan field - Kuwait	
iv) Ghawar - Saudi Arabia	
v) Upper Zakum oil field - Abu Dhabi	
vi) South Pars/North Dome Gas-Condensate field - Qatar & Iran	
Assignments/Presentations/Evaluation	12
1 1551 Similarity 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
REFERENCES	
1. Armstrong H. A. and Brasier M. D. (2005) Microfossils. Blackwell	
Publishing.	
2. Gary Nichols (2009) Sedimentology and Stratigraphy. A John Wiley &	
Sons, Ltd., Publication.	
3. Kumar Ravindra (2020) Fundamentals of Historical Geology and	
Stratigraphy of India. New Age International Private Limited.	
4. M. S. Krishnan (2017) Stratigraphy of India and Burma. 6 th Edition CBS	
Publisher.	
5. Michael E. Brookfield (2003) Principles of Stratigraphy. Wiley-Blackwell	
Publisher.	
6. Ramakrishnan and Vaidyanadhan (2010) Geology of India. Geological	
Society of India – Vol. 1& 2.	
7. Sam Boggs Jr. (2014) Principles of Sedimentology and Stratigraphy, Fifth	
Edition. Pearson Education Limited.	
8. Saraswati P. K. and Srinivasan M. S. (2016) Micropaleontology:	
Principles and Applications. Springer International Publishing	
Switzerland.	
9. Schoch, Robert, M. (1989) Stratigraphy: Principles and Methods, Van	
Nostrand Reinhold, New York.	
10 W D' H 1 1 4 1 (1000) C 1 1 1 E' C 1 C 1 1	1

10. W. Brian Harland et. al (1989) Geological Time Scale. Cambridge

University Press.

PTP-1: (Practicals related to PT-1 and PT-2) (3 credits)

Topics

Practicals related to PT-1:

- 1. Determination of Shale Factor of a reservoir rock
- 2. Estimation of Optical Activity of an organic compound
- 3. Determination of Refractive Index of an organic compound using Abbey's Refractometer
- 4. Isopach maps
- 5. Porosity and Permeability measurement

Practicals related to PT-2:

- 1. Megascopic study of the clastic rocks with genetic significance
- 2. Megascopic study of the non-clastic rocks with genetic significance
- 3. Microscopic study of the clastic and non-clastic rocks with genetic significance.
- 4. Study of sedimentary structures with their environmental significance
- 5. Study of core samples
- 6. Identification and implications of heavy minerals
- 7. Palaeo-environmental interpretation
- 8. Quantitative method of estimation of roundness by Weadle's method
- 9. Grain morphology (chi-square test)
- 10. Size and Shape Analysis

PTP-2: (Practicals related to PT-3 and PT-4) (3 credits)

Topics

Practicals related to PT-3:

- 1. Three-point problems based on drilling data.
- 2. Construction, interpretation and use of cross section of Geological maps:
 - i) Geological maps of with folds having vertical beds,
 - ii) Geological maps of with inclined faults, dykes, unconformities etc.
- 3. Graphical problems related to Plunge, Rake and Bearing of linear and planar body
- 4. Problems related to Vertical and Inclined fault
- 5. Dip isogons
- 6. Introduction and Interpretation of Dip isogon patterns for different Ramsay's classes of folds & giving their general & diagnostic characters.

Practicals related to PT-4:

- 1. Stratigraphy: Exercises based on Correlation, Lithological and Palaeontological.
- 2. Sedimentary basins of India, brief Lithological, Structural and Palaeontological descriptions.
- 3. Identification of environments with RTM suborders of foraminifera.
- 4. Foraminifera:
 - A. Study of Selected Genera of Foraminifera with Reference to: Classification, Description, Composition, Distribution (Environmental & Geological) and Distinguishing Features:
 - i) Nodosarides (Lagena & others),
 - ii) Bolivina,
 - iii) Ammonia,
 - iv) Elphidium,
 - v) Quinqueloculina,
 - vi) Globorotalia,
 - vii) Globogerina,
 - viii) Textularia.
- 5. Ostracoda: General Morphology & Orientation of Carapace.
- 6. Pollens & Spores: Morphology, Stain Test and Distribution

SEMESTER - II PT-5: Petroleum Geochemistry (4 Credits) (60 Hours)

Topics	No. of Lectures
Unit I: Introduction:	
A. Introduction to Geochemistry	6
iv) Paraffins, Cycloparaffins or Naphthenes, Aromatic Hydrocarbon,	
Olefin Hydrocarbons	
v) Sulphur Compounds, Nitrogen Compounds, Oxygen Compounds,	
Organo-metallic Hydrocarbons, H/C ratio of Hydrocarbons	
vi) Kerogens: Formation, Composition and Diagenesis	
B. Oil Field Brines:	6
iv) Composition and Classification	
v) Origin and alternation of Oil Field Brines	
vi) Importance of Oil Field water analysis, effects of water circulation	
on Hydrocarbons	
Unit II: Properties and Thermodynamics of Hydrocarbons:	
A. Properties:	
iv) Density, Viscosity, Surface Tension, Colour, Fluorescence	7
v) Cloud Point and Pour Point, Aniline Point, Flash Point	
vi) Optical Properties, Refractive Index and Calorific Value	
B. Hydrocarbon Thermodynamics:	5
iv) Liquid Phase Behaviour, Molecular Behaviour	
v) Changes in Phases with Changes in Pressure Temperature	
vi) Pure Hydrocarbons, Hydrocarbon Mixtures, Low Shrinkage – Gas,	
High Shrinkage – Gas, Retrograde Condensate Gas, Wet and Dry	
Gas	
Unit III: Crude Oil:	
A. Classification:	6
a) Physical Classification of Crude Oil	
b) Chemical Classification of Crude Oil	
c) Genetic Classification of Crude Oil	
B. Separation Mechanism:	6
a) Distillation and Classification of Petroleum	
b) First, Second and Third Generation Petrochemicals	
c) Miscellaneous Petrochemicals	
Unit IV: Refining and Fractionation of Hydrocarbons:	
A. Refining of Hydrocarbons:	7
a) Introduction to Separation, Conversion, Treatment and Storage	
b) Processing Units and Auxiliary Facilities	
c) Crude Oil Distillation Unit and Refining End Products	
B. Fractionation of Hydrocarbons:	5

IVI. Sc. Filst fedi	
a) Relative volatility, Degree of Separation, Oil Shale-Oil	
Fractionation Techniques	
b) Fractionators and devices for Fractionation of Hydrocarbons, Crude	
Oil Distillation Devices and Procedures	
c) Natural Gas Liquids (NGL) extraction and its process	
Assignments / Presentation / Group Discussions / Assessments	12
REFERENCES	
6. An introduction to Physics and Chemistry of Petroleum - Kinghorn	
7. Introduction to Petrochemicals – Sukumar Maiti	
8. Geochemistry in Petroleum Explorations – D W Waples	
9. Petroleum Geochemistry and Geology – John Hunt	
10. Chemicals from Petroleum – A L Waddams	
11. Analytical Chemistry – Day and Underwood	
12. Instrumental Methods – Willard De Merit	
13. Instrumental Methods of Analysis - Ewing	

PT-6: Depositional System Analysis (4 Credits) (60 Hours)

	Topics	No. of Lectures
Unit I	: Depositional System:	
A.	Introduction: Basic concepts of: a) Depositional Systems, b) Sedimentary Environments, c) Sedimentary Facies, d) Sedimentary models, e) Walther's law.	4
В.	Fluvial models: a) Basic fluvial systems / models with their Discharge Characteristics, spectral dip oriented facies types; b) Classification and sub facies of alluvial systems.	3
C.	Depositional models of following fluvial systems:	5
٠.	i. Braided fluvial system	
	ii. Coarse grained meander belt system	
	iii. Fine grained meander system	
	iv. Distributary channel	
	v. Confined valley fill deposits.	
Unit I	I: Delta Models :	
A.	Definition of Delta, Stages of development of ideal delta system	3
	and morphological units of delta: a) Progradation of delta	
	(Mississippi, Nile and Bramhaputra delta) b) Triangular classification	
	of deltas; c) Ancient delta deposits; d) Delta cycle: Constructional	
	and destructional phase in delta formation.	
В.	Delta deposition: Variables involved, High constructive and High destructive deltas.	1
C.	Fan delta model: Characteristics, tectonic setting and associated	
	facies.	1
D.	River dominated deltas: Elongate deltas- Example with	
	progradation and aggradation facies.	2
E.	Lobate deltas as high constructive deltas- Example with	
	characteristic progradation and aggradationfacies.	2
F.	Marine dominated deltas: Examples, characteristics and facies of:	
a)	Wave dominated delta	
b)	Tide dominated delta	3
G.	Recognition of ancient deltas. Contemporaneous and post	
	depositional compaction of delta sediments as a Digenetic modelin	
	trapping of hydrocarbons.	
	II: Strike Systems (Non deltaic coast lines):	
	Barrier bars: Types and facies assemblages.	2
В.	Shore face facies: Geometry, boundary relationships and vertical	
~	sequence.	2
С.	Strandplain Systems: processes, facies and variations.	2

M. Sc. First Year

M. Sc.	i ii st i cai	Petroleum Tec
D.	Tidal flat Systems: Tidal inlet processes and facies.	2
E.	Terrigenous Shelf Systems: Structural shelf and Physiographic shelf;	
	Shelf environment and processes; Shelf depositional models-tide	
	dominated, wave dominated, biogenic and carbonate shelf.	2
F.	Slope and Abyssal Systems: Definitions and general features.	2
Unit I	V: Basin formation mechanisms and sedimentation:	2
Α.	Klemme's classification of basin types;	
В.	Effect of tectonism on spatial arrangement of Marginal and	3
	Cratonic basins.	
C.	Basin formation mechanisms: Basins due to lithospheric stretching;	7
	Basins due to flexure, Basins associated with strike slip deformation;	
	Basin setting and depositional style: Depositional styles of basins	
	related to divergent motion, convergent motion and strike slip	
	deformation.	
•	Assignments/Presentations/Evaluation	12
REFE	RENCES	
	1. Reading, H.G. (Ed.) (1996) Sedimentary Environments: Processes,	
	Facies and Stratigraphy. 3rd Edition, Blackwell Science, Oxford, 688.	
	2. Miall, A.D. (1984) Depositional systems. In: Principles of	
	Sedimentary Basin Analysis. Springer, New York, NY.	
	3. Brown, L. F., Jr., and Fisher, W. L., (1977) Seismic stratigraphic	
	interpretation of depositional systems.	
	4. D.H. Welte, B. Horsfield & D.R. Baker (eds).(1997) Petroleum and	
	basin evolution: Insights from petroleum geochemistry, geology and	
	basin modeling.	
	5. R. C. Selley (2000) Applied Sedimentology.	
	6. H. E. Reineck & I. B. Singh (1974) Depositional Sedimentary	
	Environments.	
		_L

SEMESTER – I

PT-7: Petroleum Exploration Techniques (4 Credits) (60 Hours)

11-7.1 etroleum Exploration Techniques (4 Credits) (00 Ho		
Topics	No. of Lectures	
Unit I: Geological Exploration:		
A. Use of aerial photographs, satellite imageries, and radar	6	
imageries in structural or litho logical mapping for Petroleum		
Exploration. Techniques of Geological Mapping: Surface and		
Sub Surface.		
B. Surface Geochemistry in Petroleum Exploration:	6	
Concepts of Micro seepage. Methods of Micro seepage		
detection: Direct vsIndirect. Significance of following methods		
in Petroleum Exploration: Radiometric, Halogens, Major and		
Minor elements, Microbial, Helium, Ph/Eh Methods;		
Unit II: Methods used in Petroleum Exploration:		
A. Magnetic Method: Introduction, Magnetic field of the Earth, Magnetism	6	
of Rocks and Minerals, Instruments (Schmidt, Fluxgate, Torsion		
Magnetometers), Field Procedures, Reduction of Magnetic Anomaly Maps		
and Profiles, Airborne Magnetometers (Constructions and working		
principles), Interpretations, Applications in Petroleum Explorations with		
Indian examples.		
B. Gravity Method: Introduction, Gravitational field of the Earth, Densities	6	
of Rocks and Minerals, Measurement of Gravity (Absolute and Relative),		
Instruments (Pendulum measurements, Spring Gravimeters, Vibrating		
Spring Gravimeters), Field Procedures, Reduction of Gravity Data, Gravity		
Modelling (Gravity Anomalies with simple Geometrics, Models using		
Semi-infinite slab approximations), Gravity Anomaly Maps,		
Interpretations, Applications in Petroleum Explorations with Indian		
Examples.		
Unit III: Seismic Method:		
A. Basic Concepts: General Principles, Seismology and Seismic	6	
Prospecting, Elastic Properties of rocks, Refraction and Reflection of		
seismic waves, general scheme of Seismic Prospecting; Seismic Body		
Waves (Compressional, Shear, Body Waves), Refractions and		
Reflections of Seismic Body Waves, Rays and Wave Fronts, Wave		
Conversions, Snell's Law, Critical Refraction, Paths of Seismic Body		
Waves), Seismic Surface Waves(Raleigh and Love Waves),		
Waveguides, Seismograms, The source Wavelets, Geometrical		
Spreading and Absorption, Transmission and Reflection Coefficients,		
Vibrations at a Receiver, Recording Seismic Waves.		
B. Refracted Seismic Waves and Earth Structure:	6	
The Single- layer Refraction Problem, Critical Refraction, Preparing a		
Travel Time Curve, Measuring Seismic Wave Velocities, Calculating		

Layer Thickness, Relationships Between Intercept Time and Crossing Distance Application, Refracted Waves in Multilayered Structures, The Ray Parameter, Wave Fronts and Rays, Travel Time and Layer Thickness, Features of Reversed Travel Time Curves, Calculating Velocity, Thickness and Dip, Application, Refraction Along a Discontinuous Boundary, Some Limitations of Seismic Refraction Survey, Static Corrections, Inspection of Travel Time Curves, The Plus – Minus Method, The Wave Front Method, Applications of Seismic Refraction Surveying. **Unit IV:** A. Reflected Seismic Waves and Earth Structure: Reflection from a 6 Single Horizontal surface, The Reflection Travel Time Curve, Reflection Arrival Time, Normal Move – out, Measuring Velocity and Reflection Depth, reflected waves and Direct waves, Reflection from a sloping surface, Paths of Reflected Waves, Reflected Travel Time, Reflector Depth and Dip, Alternate Analysis, Three – Dimensional Dip Calculations. Reflected Waves in a Multi – Layered Structure, Average Velocities, Root- Mean- Square (RMS) Velocities, Layer Thickness and Velocity, Reflector Depth, Practical Example, MultiReflected Waves, Diffracted Waves, Multifold Reflections. **B.** Seismic Surveying: Instruments for Seismic Surveying (Geophones, Hydrophones), The Seismic Cable, Marine Streamer Cables, Analog 6 Recording Systems, DigitalRecording Systems, Seismogram Displays, Impulsive Sources, Non-Impulsive Energy Source, The Seismic Crew, Field Operations, Basic Spreads, Single-Coverage Reflection Profiling, Common Depth Point(CDP) Reflection Profiling, Marine Seismic Profiling, Noise Control, Noise Problem at Sea, Vibroseis, CDP Profiling in wells, Three Dimensional Reflection Acquisition, Crooked Line Reflection Surveying. 12 Assignments / Presentation / Group Discussions / Assessments REFERENCES 1. Dobrin, M. B., and Savit, C. H., 1988, Introduction to Geophysical Prospecting (Fourth Edition), Tata McGraw Hill. 2. Rao, B. S. R. and Murthy, I. V. R., Gravity and Magnetic Methods of Prospecting 3. Ramachandra Rao M. B. (1975) Outlines of Geophysical Prospecting: A Manual for Geologists.

PT-8: Environmental Management and Petroleum Economics

(2 Credits) (30 Hours)

	Topics	No. of Lectures
Unit I	Environmental Studies:	
A.	Environmental impact and management in the petroleum industry	1
В.	Introduction to environmental control in the petroleum industry & Overview of environmental issues	1
C.	The impact of drilling and production operations	1
C.	The impact of drining and production operations	1
D.	Toxicity	
	a. Physiological,	1
	b. asphyxiation,	
	c. respiratory,	
	d. skin effect of petroleum hydrocarbons	
E.	Nuclear radiation, Air pollution & Acoustic impacts	1
F.	Environmental transport of petroleum wastes:	1
	a. Surface paths-	
	b. Subsurface paths-	
	c. Atmospheric paths,	
	d. Planning for environmental protection.	
G.	Introduction to waste management:	2
	a. Waste treatment methods:	
	i. Treatment of water-	
	ii. Treatment of solids	
	iii. Treatment of air emissions	
	b. Wastewater disposal:	
	i. surface disposal.	
H.	Environmental Impact Assessment:	2
	a. Introduction: Concept, Environmental Impact Assessment model and	
	its implementation.	
I.	Case Study of Gandhar Oil Field and Enhanced Oil Recovery by Steam	2
	Injection	

Unit I	I: Petroleum Production Economics:		
Fundamentals of Economics & Petroleum Economics			
A.	Fundamentals of Economics & Economic terms	1	
В.	Understanding petroleum projects, Role of the Petroleum Economist, Terms, and concepts	1	
C.	Characteristics of oil and gas resources	1	
D.	Mineral rights, licenses and leases, Type of oil and gas contracts	1	
E.	Revenue, Costs, Profits & Cash flow	1	
F.	CAPEX & OPEX, Depreciation, depletion, and amortization (Value Chain)	1	
G.	Economic analysis and decision making - certainty, risk & uncertainty	1	
H.	Time value of money / Profitability of a venture - Pay out (Payback) period, Net Present value (NPV), IRR, Discounted profit-to-investment ratio (DPR)	2	
I.	Risk and uncertainty & Risk analysis & Decision trees analysis		
J.	Drilling economics.	2	
Assign	monts/Procontations/Evaluation	1 12	
Assignments/Presentations/Evaluation			
	EFERENCES Labor C. Rein (1996) Equipmental Control in Potantona Familia action Colf		
1.	John C. Reis, (1996). Environmental Control in Petroleum Engineering, Gulf Publishing Company		
2.	R. Rajagopalan, (2011) Environmental Studies, 2nd Edition, Oxford University Press.		
3.	Paul D. Newendorp & John R. Schuyler (2000)Decision Analysis for Petroleum Exploration. Planning Pr, USA		
4.	Bakr A. Bakr, H.K. Abdel-Aal, M.A. Al-Sahlwai (1992) Petroleum Economics and Engineering, 2nd Edition. Marcel Dekker		
5.	Rebecca A. Gallun, Charlotte J. Wright, Linda M. Nichols & John W. Stevenson (2001)Fundamentals of Oil and Gas Accounting Hardcover		
6.	Bob Tippee (1993) Where's the Shortage? A Nontechnical Guide to Petroleum Economics. Pennwell Corp		

PTP-3: (Practicals related to PT-5 and PT-6) (3 credits)

Topics

Practicals related to PT-5:

- 1. Surface tension of organic fluids by traveling microscope
- 2. Determination of chemical composition of a binary mixture of an organic compound with help of pH meter.
- 3. Use of Flame photometer and determination of sodium, potassium and calcium
- 4. Use of viscometer and determination of chemical composition of unknown hydrocarbon mixture
- 5. Problems related to specific gravity of gases

Practicals related to PT-6:

- 1. Interpretation of Structure contour maps:
- 2. Determination of closure of folds, faults, intersecting faults & faulted structures from structure contour maps
- 3. Determination of reversals of structures from structure contour maps
- 4. Determination of order of priority to drill the various structures for oil& gas based on structure contour maps
- 5. Removal of regional tilt of the area & locating pre-tilt crest of the structure & determining the pre-tilt closure from the structure contour maps.
- 6. Interpretation of Isopach maps & maps showing relations of lithological variations in reservoir to closure & closed area.

PTP-4: (Practicals related to PT-7 and PT-8) (2 credits)

Topics

Practicals related to PT-7:

- 1. Determination of True Resistivity and thickness of beds from the Resistivity data from VES.
- 2. Determination of depth of ore bodies from Gravity data / Identification of sub surface structures from Bouger AnomalyMaps / Gravity data corrections.
- 3. Determination of depth and orientation of dyke from verticalMagnetic intensities, by drawing a Magnetic Anomaly curve
- 4. Drawing of Seismic Section from Seismic data
- 5. Finding depth of refracting surveys two layers and three layers from Seismic Refraction data.
- 6. Seismic Reflection Data Interpretation.

Practicals related to PT-8:

- 1. Exercises related to environmental issues in the oil field.
- 2. Exercises related to Environmental Impact Assessment
- 3. Problems related to drilling & production economics.
- 4. Exercise related to Revenue, Costs, Profits & Drofits & Drofits
- 5. Exercise related to CAPEX & Depreciation, depletion, and amortization
- 6. Problems related to Time value of money Pay out (Payback) period, Net Present value (NPV) & Description (NPV) & Descripti
- 7. Exercise on Decision tree analysis